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We use a Wicksellian single rotation framework to analyze the impact of the intertemporally 
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that higher interest rate volatility increases, while higher risk aversion decreases the optimal 
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aversion. 
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1 Introduction

The most often used starting point in the analyzes of optimal rotation period of even
age forest stands has been the Faustmannian ongoing rotations framework. Under the
assumptions of constant exogenous parameters and perfect capital markets the basic
deterministic model leads to a constant optimal rotation period for an even age stand
to maximize the present value of forest stand (see e.g. Johansson and Löfgren 1985 and
Samuelson 1976). The deterministic framework has been extended in studies focusing
the impacts of risk of forest fire (see e.g. Reed 1984), stochastic forest stand value
(see e.g. Clarke and Reed 1989, 1990, Willassen 1998, Alvarez 2004 and Chang 2004)
and stochastic timber prices (see e.g. Insley 2002 and Plantinga 1998) on the optimal
harvesting threshold and on the expected rotation length. Modelling forest fire risk
as a Poisson process implies a shorter rotation period than in the deterministic case
due to the higher effective discount rate for forestry (cf. Reed 1984). But usually
the reverse happens in the presence of stochastic forest stand value and timber price;
higher volatility will increase the optimal harvesting threshold and thereby lengthen the
expected rotation period. The explanation of this observation goes as follows. Even
though higher volatility raises the expected net present value of the harvesting yield, it
also raises the value of waiting by increasing the expected net present value of the future
harvesting opportunities. Since the latter effect dominates the former the net impact of
increased volatility on the optimal harvesting threshold is unambiguously positive (see
e.g. Clarke and Reed 1989, 1990, Willassen 1998, Alvarez 2004 and Chang 2004).

All studies mentioned above have used the assumption of constant and deterministic
discount rate, which is problematic because rotation periods are usually quite long
and interest rates fluctuate over time. It is known on the basis of extensive empirical
research in financial economics (see e.g. Cochrane 2001, Ch. 20) that in the long run
interest rates are volatile and follow mean-reverting processes. Alvarez and Koskela
2003, 2004 have used a Wicksellian single rotation framework to analyze the impact of
the intertemporally fluctuating and stochastic mean-reverting interest rate process on
the optimal harvesting threshold and the expected length of rotation period, when forest
stand value has also been assumed to be stochastic and landowners are risk neutral. In
this paper we extend these analyzes in the two dimensions. First, we model the interest
rate as a more general parametrized mean-reverting process using the well-known Cox-
Ingersoll-Ross 1985 model which provides a very realistic specification of the interest
rate process over time. We model forest stand value, i.e. the product of timber price and
forest volume, as a geometric Brownian motion. Second, and importantly, we assume
that landowners are risk averse and ask: what is the potential role of risk aversion under
stochastic interest rate and stochastic forest stand value?

In this paper we provide the following new results. First, in the case of risk-averse
landowners we show an explicit solution for the tree-cutting problem under interest
rate and forest value uncertainty by expressing the original path-dependent optimal
stopping problem as an associated ordinary path-independent optimal stopping prob-
lem. Second, we demonstrate that higher interest rate volatility increases the optimal
harvesting threshold of a risk-averse landowner and therefore lengthens the expected
rotation period. Third, higher relative risk aversion decreases the optimal harvesting
threshold and thus shortens the expected rotation period. Fourth, under risk aversion
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increased forest value volatility decreases the optimal harvesting threshold, but it has no
effect under risk neutrality. Finally, numerical illustrations indicate that higher interest
rate volatility raises the optimal harvesting threshold and the expected rotation period
at an increasing rate, while higher forest value volatility will decrease the sensitivity
of the optimal harvesting threshold with respect to interest rate volatility under risk
averse landowners.

We proceed as follows. In section 2 we present and solve a two-dimensional and
path-dependent optimal stopping problem in terms of the harvesting threshold under
stochastic interest rate and stochastic forest value when landowner behavior is risk
averse. Moreover, we illustrate our results numerically. Finally, there is a brief conclud-
ing section.

2 Optimal Forest Rotation Under Interest Rate

and Forest Stand Value Uncertainty

In this section we establish the following results. First, we characterize the optimal rota-
tion problem under stochastic interest rate and forest stand value and show that under
a set of plausible assumptions the two-dimensional path-dependent rotation problem
can be re-expressed as an ordinary path-independent optimal stopping problem. Sec-
ond, we demonstrate that the transformed rotation problem is explicitly solvable and
provide an analytic characterization. Third, we show that higher interest rate volatility
decelerates, whil higher relative risk aversion accelerates rotation. Finally, a numerical
illustration about the relationship between the optimal rotation threshold and interest
rate volatility and its dependence on risk aversion is also presented.

Consider the following (path-dependent) Wicksellian optimal rotation problem

Vγ(x, r) = sup
τ

E(x,r)

[
e−

∫ τ
0 rsdsu(Xτ )

]
, (2.1)

where the underlying timber value and interest rate processes (Xt, rt) evolve according
to the dynamics described by the following stochastic differential equations

drt = (a− brt)dt + c
√

rtdWt, r0 = r (2.2)

and

dXt = µXtdt + σXtdŴt, X0 = x, (2.3)

where a, b, c, σ, µ ∈ R+ are known exogenously given constants, and Wt and Ŵt are two
stochastically independent Wiener processes (under the objective probability measure
P). In what follows we assume that the utility function is of the standard HARA-type
(cf. Merton 1971) u(x) = 1

γ xγ , where 1− γ ∈ (0, 1) is the coefficient measuring the rate
of relative risk aversion. The interest rate rt follows a mean-reverting process while the
timber value Xt follows a geometric Brownian motion. It is worth emphasizing – as we
mentioned earlier – that the interest rate model (2.2) is known in financial economics as
the Cox-Ingersoll-Ross model of the interest rate which can be supported theoretically
(cf. Cox, Ingersoll, and Ross 1985) and which lies in conformity with empirics (cf.
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Björk 1998, chapter 17, and Cochrane 2001, chapters 19, 20). It is also worth pointing
out that if a ≥ c2/2, then the interest rate process rt converges towards a long run
stationary (Gamma-) distribution with density (cf. Borodin and Salminen 2002, pp.
35–37)

p(r) = (bη)aη raη−1e−bηr

Γ(aη)
,

where η = 2/c2 > 0. Especially, we find that if a ≥ c2/2 then the expected long-run
interest rate can be expressed as limt→∞E[rt] = a/b > 0 which coincides with the long
run stationary steady state interest rate in the absence of uncertainty.

Before proceeding in the analysis of the stochastic valuation and forest rotation, we
first establish the following benchmark outcome, characterized in

Theorem 2.1. In the absence of volatility of interest rate and forest stand value, i.e.
when c = σ = 0 and assuming that µγ < a/b, which guarantees the finiteness of the
value of the optimal policy, the optimal rotation date is

t∗ = ln
(

a− bmin(µγ, r)
a− bµγ

)1/b

and the value of the optimal rotation strategy can be expressed as

V̂γ(x, r) = sup
t≥0

[
e−

∫ t
0 rsds 1

γ
Xγ

t

]
=





1
γ xγ r ≥ µγ

1
γ xγe−(r−µγ)/b

(
a−bµγ
a−br

)(a/b−µγ)/b
r < µγ.

(2.4)

Proof. See Appendix A.

It is worth noticing that the optimal rotation date t∗ is the first date at which the
underlying interest rate process rt hits the growth rate µγ from below. The absence of
speculative bubbles condition guarantees that this date is finite and, therefore, that the
forest will eventually be harvested depending on the relative sizes of the parameters.
Especially, we find that an increase in the per capita growth rate of the forest stand
value prolongs the length of the optimal rotation period t∗ by increasing the required
rate of return. Somewhat interestingly, the optimal rotation policy does not depend
on the forest stand value (except for its growth rate) but is solely determined by the
underlying interest rate dynamics described by parameters a and b. This observation is
based on the constancy (as a function of the current forest stand value x) of the ratio
V̂γ(x, r)/xγ . Importantly, we observe that the optimal harvesting threshold µγ is an
increasing function of the parameter γ implying that increased relative risk aversion
(i.e. a decrease in γ) decreases the optimal harvesting threshold and, therefore, has an
accelerating effect on optimal rotation.

Having characterized the underlying stochastic dynamics in (2.2) and (2.3) and the
optimal single rotation problem (2.1) in the absence of volatility we can now state the
following important result
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Lemma 2.2. Under the stochastic interest rate and forest stand value dynamics (2.2)
and (2.3) the path-dependent optimal rotation problem (2.1) can be re-expressed as the
following ordinary path-independent optimal stopping problem

Vγ(x, r) =
1
γ

xγeAr sup
τ

Er

[
e(δ(γ)+aA)τ−Ar̂τ

]
, (2.5)

where

A =
b

c2
−

√
b2

c4
+

2
c2

< 0

denotes the negative root of the quadratic equation c2z2 − 2bz − 2 = 0, δ(γ) = µγ +
1
2σ2γ(γ − 1), and the interest rate r̂t evolves (under P) according to the dynamics de-
scribed by the stochastic differential equation

dr̂t =
(
a− (b−Ac2)r̂t

)
dt + c

√
r̂tdWt, r̂0 = r. (2.6)

Especially, problem (2.5) is independent of forest stand value volatility σ under risk
neutrality (i.e. when γ = 1).

Proof. See Appendix B.

Lemma 2.2 is crucial in the sense that using this we can demonstrate that under
the assumptions concerning the stochastic processes modelling the interest rate and the
forest stand value we get an ordinary and solvable one-dimensional optimal stopping
problem. It is worth observing that our finding is essentially based on a technique
known as a change of numeraire (cf. Björk, 1998 chapter 19). More precisely, instead of
tackling the original valuation directly, we simplify the analysis by expressing the value
of the project in terms of the price of a zero coupon bond maturing at exercise. Our
main new result is now summarized in the following

Theorem 2.3. Assume that the absence of speculative bubbles condition δ(γ)+aA < 0,
guaranteeing the finiteness of the value of the optimal policy, is satisfied. Then the value
of the optimal single rotation problem (2.1) reads as

Vγ(x, r) =
1
γ

xγeArψ(r) sup
y≥r

[
e−Ay

ψ(y)

]
=

{
1
γ xγ , r ≥ r∗
1
γ xγeA(r−r∗) ψ(r)

ψ(r∗) , r < r∗

where the increasing fundamental solution

ψ(r) =
∫ 1

0
e2(b−Ac2)rt/c2tρ−1(1− t)2a/c2−ρ−1dt

is known as Kummer’s confluent hypergeometric function (see e.g. Abramowitz and
Stegun 1968, pp. 503–535) and ρ = (δ(γ)+aA)/(Ac2−b) > 0. The optimal interest rate
exercise threshold r∗ is the unique root of the ordinary first order condition ψ′(r∗) =
−Aψ(r∗) and it has the following properties: r∗ > µγ for c > 0 and r∗ = µγ when
c = 0. Moreover, under risk neutrality (i.e. when γ = 1) the optimal rotation policy is
independent of the forest stand value volatility σ.

Proof. See Appendix C.
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Theorem 2.3 demonstrates that the path-dependent optimal rotation problem (2.5)
is explicitly solvable whenever the absence of speculative bubbles condition δ(γ)+aA < 0
– guaranteeing the finiteness of the value of the optimal policy – is satisfied. In order
to qualify the combined effect of interest rate and forest stand value volatility on the
absence of speculative bubbles condition consider the mapping f(c, σ) = δ(γ) + aA.
Since limc↓0 f(c, σ) = δ(γ)− a/b, limc→∞ f(c, σ) = δ(γ), and

fc(c, σ) =
caA2

b− c2A
> 0 (2.7)

we immediately observe that if δ(γ) ≥ a/b then the absence of speculative bubbles
condition δ(γ) + aA < 0 is never satisfied and in that case the value of the harvesting
opportunity becomes unbounded. On the other hand, if δ(γ) ≤ 0 then the absence of
speculative bubbles condition δ(γ) + aA < 0 is satisfied for all values of interest rate
volatility. However, if 0 < δ(γ) < a/b, then there is a unique critical volatility coefficient

c∗ =

√
2ab

δ2(γ)

(a

b
− δ(γ)

)
> 0

above which the the absence of speculative bubbles condition δ(γ) + aA < 0 is again
violated. Interestingly, we find that

∂c∗

∂σ
=

σγ(1− γ)(b− c2A)
caA2

> 0.

This means that the critical interest rate volatility coefficient is an increasing function
of forest stand value volatility under risk aversion. In other words, the set of admissible
interest rate volatilities expands as forest stand value volatility increases.

In order to analyze the effect of forest stand value volatility on the absence of
speculative bubbles condition, we first notice that under risk aversion f(c, 0) = γµ+aA,
limσ→∞ f(c, σ) = −∞, and fσ(c, σ) = σγ(γ − 1) < 0 implying that the absence of
speculative bubbles condition is satisfied for all forest stand value volatilities whenever
the condition γµ + aA ≤ 0 is satisfied. However, if γµ + aA > 0, then there is a critical
volatility coefficient

σ∗ =

√
2(aA + µγ)
γ(1− γ)

> 0

below which the absence of speculative bubbles condition is violated. In other words,
if the condition γµ + aA > 0 is satisfied, then the value of the harvesting opportunity
is finite only when forest stand value volatility is sufficiently high.

As is clear from (2.7), the factor δ(γ) + aA is an increasing function of interest rate
volatility. Hence, higher interest rate volatility increases the required exercise premium
and, thus, prolongs the expected length of the optimal rotation period. An economic
interpretation of this finding goes as follows. Higher interest rate volatility increases the
certainty-equivalent interest rate and thereby lengthens the optimal rotation period. In
financial terms, increased interest rate volatility increases the value of the harvesting
opportunity Vγ(x, r) (by increasing the value of zero-coupon bonds maturing at the
exercise date τ) while leaving the exercise payoff 1

γ xγ unaffected. However, since the
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option to harvest is lost at exercise (by the usual balance identity Vγ(x, r∗) = 1
γ xγ

stating that at the optimum the project value should be equal to its full cost which
in this case is the lost option value), we observe that increased interest rate volatility
raises the required exercise premium and, therefore, prolongs the expected length of the
optimal rotation period.

The impact of risk aversion on the optimal rotation policy and its value is now
summarized in the following.

Theorem 2.4. If µ ≥ 1
2σ2 then the optimal rotation threshold is an increasing function

of the parameter γ. That is, if the condition µ ≥ 1
2σ2 is satisfied then increased relative

risk aversion shortens the expected length of the rotation period by decreasing the optimal
harvesting threshold.

Proof. See Appendix D.

Along the lines of our findings in the deterministic setting, Theorem 2.4 demon-
strates that higher relative risk aversion accelerates optimal rotation by decreasing the
optimal harvesting threshold. This observation is of interest since it emphasizes the
inter-temporal aspect of risk aversion. Put somewhat differently, a rational risk averse
agent prefers less uncertain returns realized in the near future in comparison with po-
tentially higher returns realized in the far future and subject to larger uncertainty.
A second key comparative static property of the optimal policy and its value is now
summarized in the following.

Theorem 2.5. Under risk aversion, increased forest stand value volatility decreases
the value of the optimal harvesting policy and accelerates rotation by decreasing the
optimal harvesting threshold. Put formally, ∂Vγ(x, r)/∂σ < 0 and ∂r∗/∂σ < 0 whenever
0 < γ < 1.

Proof. See Appendix E.

According to Theorem 2.5 under risk aversion, both the optimal harvesting threshold
and the value of the harvesting opportunity are decreasing functions of forest stand
value volatility. Thus, in such circumstances increased forest stand value volatility
unambiguously accelerates optimal rotation. This result is of interest, since the optimal
harvesting policy and its value are independent of forest stand value volatility under
risk neutrality. Hence, in the present case the accelerating effect of higher relative risk
aversion is strengthened by the presence of forest stand value volatility.

The impact of relative risk aversion on the sensitivity of the optimal harvesting
threshold with respect to changes in the volatility of the underlying interest rate dy-
namics is illustrated in Figure 1 under the assumptions that b = 0.1, a = 0.045b, and
µ = 0.03.

The impact of forest stand value volatility on the sensitivity of the optimal harvest-
ing threshold with respect to changes in the volatility of the underlying interest rate
dynamics is now illustrated in Figure 2 under the assumptions that b = 0.1, a = 0.045b,
γ = 0.75, and µ = 0.03

Finally, the set of admissible volatility coefficients is illustrated in Figure 3 under
the assumption that b = 0.1, a = 0.045b, and µ = 0.03. Since the set of admissible
volatility pairs is formed by the region below the curves, we observe that higher risk
aversion decreases the set of admissible volatility pairs.
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Figure 1: The optimal rotation threshold as a function of interest rate volatility c
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Figure 2: The optimal rotation threshold as a function of interest rate volatility c

3 Conclusion

In this paper we have used the Wicksellian single rotation framework to study the issue
of forest rotation under variable and stochastic interest rate when forest stand value is
also stochastic and landowners are risk averse. In order to accomplish this task, we have
modelled the stochastic and intertemporally fluctuating interest rate as a parametrized
mean-reverting process by applying the Cox-Ingersoll-Ross model of interest rate - which
is well-known in financial economics and lies in conformity with empirics - and forest
stand value as a geometric Brownian motion. We provided an explicit solution for
the two-dimensional path-dependent optimal stopping problem and demonstrated that
higher interest rate volatility increases the optimal harvesting threshold and thereby
lengthens the expected rotation period, while higher relative risk aversion has the re-
verse effect. Interestingly, we also found that under risk aversion higher forest value
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Figure 3: The set of admissible volatility pairs (c, σ)

volatility will have an accelerating effect on the optimal rotation policy by decreasing
the harvesting threshold at which the harvesting opportunity should be optimally ex-
ercised. But under risk neutrality forest value volatility does not affect the optimal
rotation policy. Finally, numerical illustrations indicate that the optimal harvesting
threshold is a strictly convex function of the underlying interest rate process meaning
that the expected length of the rotation period becomes higher at an increasing rate as
the interest rate volatility increases. But under risk aversion higher forest value volatil-
ity will decrease the sensitivity of the optimal harvesting threshold with respect to the
interest rate volatility.

Whether our conclusions remain valid in the Faustmannian ongoing rotation frame-
work is an open question beyond the scope of this paper. Given the close connection
of impulse control problems and optimal stopping theory (see e.g. Alvarez 2004) we
are tempted to conjecture that our conclusions can be generalized to the Faustmann
framework as well. The verification of this conjecture is an open issue for future research.
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A Proof of Theorem 2.1

Proof. Integrating the ordinary differential equation drt = (a− brt)dt from 0 to t yields
rt− r = at− b

∫ t
0 rsds implying that e−

∫ t
0 rsds = e(rt−r)/b−at/b. On the other hand, since

Xγ
t = xγeµγt we find that

V̂γ(x, r) = sup
t≥0

[
e−

∫ t
0 rsds 1

γ
Xγ

t

]
=

1
γ

xγe−r/b sup
t≥0

[
e(µγ−a/b)t+rt/b

]
. (A.1)

Given this observation (A.1), consider now the mapping g(t) = e(µγ−a/b)t+rt/b. Standard
differentiation then yields g′(t) = (µγ−rt)g(t) implying that g′(t) T 0 as long as rt S µγ.
Combining this finding with the result rt = a/b + e−bt(r − a/b) and the assumption
µγ < a/b then finally shows that the rotation date

t∗ = inf{t ≥ 0 : rt ≥ µγ} = ln
(

a− bmin(µγ, r)
a− bµγ

)1/b

is optimal. Inserting this date in (A.1) then yields (2.4).

B Proof of Lemma 2.2

Proof. It is well-known that the solution of the stochastic differential equation (2.3)
reads as Xt = x exp((µ − σ2/2)t + σŴt). Moreover, we find by applying Itô’s theorem
to the mapping r 7→ ezr that

e−
1
2
(z2c2−2zb)

∫ t
0 rsds = ez(r−rt)+zatMt,

where

Mt = exp
(∫ t

0
zc
√

rsdWs − 1
2

∫ t

0
z2c2rsds

)

is a positive exponential martingale. Thus, choosing z = A implies that the discount
factor can be re-expressed as

e−
∫ t
0 rsds = eA(r−rt)+AatMt.

Given this observation, we find that the present value of the utility from the forest stand
value Xt can be expressed as

e−
∫ t
0 rsds 1

γ
Xγ

t =
1
γ

xγeA(r−rt)+Aat+δ(γ)tM̂tMt,

where δ(γ) = µγ + σ2γ(γ − 1)/2, and M̂t = eσγŴt− 1
2
γ2σ2t is a positive exponential

martingale. Consequently, we find that the path-dependent optimal rotation problem
(2.1) can be re-expressed as an ordinary path-independent optimal stopping problem

Vγ(x, r) =
1
γ

xγeAr sup
τ

Er

[
e(δ(γ)+aA)τ−Arτ M̂τMτ

]
. (B.1)
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Defining the equivalent measure Q through the likelihood-ratio dQ
dP = M̂tMt we can now

re-express (B.1) as

Vγ(x, r) =
1
γ

xγeAr sup
τ

EQr
[
e(δ(γ)+aA)τ−Arτ

]
, (B.2)

where the interest rate process rt evolves according to the dynamics described by the
following stochastic differential equation

drt =
(
a− (b−Ac2)rt

)
dt + c

√
rtdW̃t, r0 = r,

where W̃t is a standard Brownian motion under the equivalent measure Q. However,
given the strong uniqueness of a solution for the stochastic differential equation above
(cf. Øksendal, 2003, p. 68) we finally find that the rotation problem (2.1) can be
rewritten in the path-independent form (2.5) defined under the objective measure P.

C Proof of Theorem 2.3

Proof. Since

Lγ(r) = Er

[
e(δ(γ)+aA)τ−Ar̂τ

]
(C.1)

is an ordinary path-independent optimal stopping problem of a linear diffusion and,
therefore, can be solved by relying on ordinary variational inequalities, the alleged
result is a direct implication of Theorem 3 in Alvarez 2001. It is, therefore, sufficient to
determine the increasing fundamental solution of the ordinary second-order differential
equation

1
2
c2ru′′(r) + (a− (b− c2A)r)u′(r) + (δ(γ) + aA)u(r) = 0.

Making the transformation u(r) = v(θr),where θ ∈ R is an unknown constant, and
defining the variable y = θr yields that

yv′′(y) +
(

2a

c2
− 2(b−Ac2)

c2θ
y

)
v′(y) +

2(δ(γ) + aA)
θc2

v(y) = 0.

Choosing θ = 2(b − Ac2)/c2, then finally implies that the differential equation can
equivalently be expressed as

yv′′(y) +
(

2a

c2
− y

)
v′(y)− 2(δ(γ) + aA)

Ac2 − b
v(y) = 0,

which is Kummer’s differential equation.

D Proof of Theorem 2.4

Proof. Since δ′(γ) = µ− 1
2σ2 + σ2γ we observe that the condition µ ≥ 1

2σ2 implies that
δ(γ) is an increasing function of the parameter γ. Consequently, if γ̂ ≥ γ ≥ 0 then the

11



superharmonicity of the value function Lγ̂(r) and the inequality Lγ̂(r) ≥ e−Ar yield the
following inequalities

Lγ̂(r) ≥ Er

[
e(δ(γ̂)+aA)τnLγ̂(rτn)

]
≥ Er

[
e(δ(γ)+aA)τnLγ̂(rτn)

]
≥ Er

[
e(δ(γ)+aA)τn−Arτn

]
,

where τn is a sequence of almost surely finite stopping times converging to an arbitrary
stopping time τ . Letting n →∞ and invoking Fatou’s theorem implies

Lγ̂(r) ≥ lim
n→∞Er

[
e(δ(γ)+aA)τn−Arτn

]
≥ Er

[
e(δ(γ)+aA)τ−Arτ

]
.

Since this inequality is valid for an arbitrary stopping time, it has to be valid for the
optimal as well proving that Lγ̂(r) ≥ Lγ(r) for all r ∈ R+. Given this observation,
denote the continuation region where harvesting is suboptimal as Cγ = {r ∈ R+ :
Lγ(r) > e−Ar}. If r ∈ Cγ then the inequality Lγ̂(r) ≥ Lγ(r) > e−Ar implies that r ∈ Cγ̂

as well and, therefore, that Cγ ⊆ Cγ̂ which completes the proof of our theorem.

E Proof of Theorem 2.5

Proof. Since ∂δ(γ)/∂σ = σγ(γ − 1) < 0 for all γ ∈ (0, 1) we observe that increased
timber value volatility decreases the factor δ(γ)+aA and, therefore, decreases the value
of the harvesting opportunity. Proving the alleged negativity of the sign of the relation-
ship between increased timber value volatility and the optimal harvesting threshold is
analogous with the proof of Theorem 2.4.
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