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Abstract

We examine the process of building social relationships as a non-cooperative
game that requires mutual consent and involves reaching out to others at a cost.
Players create their social network from amongst their set of acquaintances. Hav-
ing acquaintances allows players to form naive beliefs about the feasibility of
building direct relationships with their acquaintances. These myopic beliefs de-
scribe how the other players are expected to respond to the initiation of a link
by a player. We introduce a stability concept called “monadic stability” where
agents play a best response to their formed myopic beliefs such that these beliefs
are self-confirming. The resulting equilibrium networks form subset of the set of
pairwise stable networks.
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1 On link formation

The goal of this paper is to shed light on how individual links, the basic building

blocks of social networks, are formed. We develop a model the captures stylized facts

known about networks. We start by assuming that the creation of social ties requires

some prior interaction, and therefore the process of link formation (under mutual

consent) principally occurs between social acquaintances.1 Individuals then “reach

out” to some of their acquaintances to establish their social network. The process of

reaching out is costly and hence requires deliberate choices. We assume that in the

acquaintance set each player has knowledge about the payoffs of other players, and

can formulate expectations about their behavior before undertaking costly actions.

From this viewpoint our contribution fits very well with the model of friendship net-

works developed in Brueckner (2003). Individuals then choose who to include in

their network based on their beliefs.

In the model we assume that players have simple, myopic beliefs about how their

acquaintances will respond if a link is initiated. These beliefs only take into account

the direct benefits that the addition or removal of a single link has for the payoffs of

the other players. Hence, beliefs are based only on the first order marginal payoffs

that can be assigned to links. The myopic nature of these beliefs is meant to cap-

ture the fact that are formed in the absence of substantial interaction among these

individuals—between individual who are mere acquaintances.

Second we assume that players respond fully rationally to the beliefs that they

have formed about the process of link formation. Hence, decision makers, after

forming their myopic beliefs about other individuals and anticipating their actions,

subsequently formulate their best response given these anticipations.2 This implies

that individual i initiates links with only those individuals that i thinks will benefit

from those (direct) links. In doing so the initiating individual assumes that the re-

spondent will consent to the link and, hence, the incurred link formation costs will

not be wasted. Thus she will not have reached out in vain! This form of rationality

that leads to the formation of the network constitutes the basis of a stability notion

called monadic stability.

1It is well established that social networks do not emerge among random strangers, but are primarily
formed between acquaintances. This literature is founded on Granovetter (1973) and confirmed empir-
ically by Friedkin (1980), Wellman, Carrington, and Hall (1988), and Tyler, Wilkinson, and Huberman
(2003). More recently new methodologies have been developed to detect community structures in so-
cial networks for testing such hypotheses. We refer to Newman and Girvan (2004) and Newman (2004)
for the details of this methodology.

2In the model players are always rational individuals. Their beliefs are myopic because they are
about acquaintances.
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Formally in the paper we distinguish between two forms of monadic stability.3

First we only consider the networks that are supported through a (myopic) belief

system to which all players formulate a best response. These weakly monadically
stable networks can be interpreted as the steady states of a learning process based

on the formation of myopic belief systems. Weak monadic stability still leads to a

relatively large and unappealing class of networks. Moreover, while these networks

might be steady states of a learning process, they only become true equilibria if the

anticipation behavior according to the myopic belief are confirmed in the actually

played actions. Thus, weak monadic stability demonstrates the fact that networks

amongst mere acquaintances may not always have very desirable properties.

These considerations lead to a second and stronger concept, which is simply

called “monadic stability”. Monadically stable networks are steady states of the my-

opic learning process in which the beliefs of the individual players are confirmed.

Hence, these networks are supported through the self-confirming equilibria (Fudenberg

and Levine 1993) of the learning process based on these myopic belief systems. It

should be evident that the myopically stable networks are the only ones that can be

seen as the equilibrium networks based on the introduced belief systems.

Third, we study the process of link formation and the creation of social networks

using the consent model of network formation with two-sided costs first developed in

Gilles, Chakrabarti, and Sarangi (2006). This simple model is based on three simple
and realistic principles encompassing real-world networks: (1) Link formation should

be based on a binary process of consent. (2) Link formation should in principle be

costly. (3) The payoff structure of network formation should be as general as possible.

In the model a link between any two players i and j is only established when

player j is willing to accept the link initiated by player i or vice versa. As suggested

by the second principle, link formation is costly. Costs depend on the strategies cho-

sen by the player in the link formation process and are incurred independent of the

outcome, i.e., even if a link is not established the initiating player still has to pay for

the act of trying to form that link.4 In the model both players bear an individually

determined cost of link formation. It is due to these two principles that beliefs play a

significant role in the process of link formation.

Following our third modeling principle, we consider a very general payoff struc-

ture that has two components — an arbitrary benefit function and additive link for-

3The term monadic stability refers to the fact that it is stable from an individual’s point of view as
opposed to being stable from a pair or dyad’s perspective.

4Like much of the networks literature we assume that these costs are exogenously given and not
dependent on the network structure. Costs that are dependent on the network structure would be
important for modeling congestion type effects.
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mation costs.5 Note that benefits depend on the resulting network, and the costs

on the link formation strategies chosen by the players. The generality of the payoff

functions adds to the strength of our results. For example, the connections model of

(Jackson and Wolinsky 1996) which is one of the most popular network models can

be written as a special case of the general payoff function used here.

In Gilles, Chakrabarti, and Sarangi (2006) we show that in general the consent

model has a multitude of Nash equilibria and, consequentially, is not discerning.

Moreover, the empty network is supported by a strict Nash equilibrium. Hence it

is important to understand how link formation leading to a network occurs. In this

paper we show that the introduction of a myopic form of confidence about the re-

sponses of other players in process of link formation suffices to reduce the number

of equilibrium networks. Next, we give a complete characterization of the class of

monadically stable networks. Our main result is that this class is exactly the family of

strictly* pairwise stable networks. These networks form a strict subset of the class of

pairwise stable networks (Jackson and Wolinsky 1996) and have very strong stability

properties.

Another advantage of our model is that we differentiate between familiarity among

individuals who can at best only be acquaintances, and the possibility of explicitly

creating a mutually beneficial but costly relationship between these individuals. The

literature on game theoretic approaches to network formation often allows links cho-

sen by players to be interpreted as confirmations of already established relationships

that occur in a non-modeled process prior to the formulated game.6 Thus, our ap-

proach is more in line with Brueckner (2003), who categorically distinguishes the

set of acquaintances a player has, from the friendship links she establishes between

them. This also places our approach within the context of Granovetter’s notion of

strong social ties. (Granovetter 1973)

2 Preliminaries and notation

In this section we introduce the basic concepts and notation pertaining to non-

cooperative games and networks. The section concludes with a brief overview of

the consent model of network formation with two-sided costs. We follow the nota-

tion and terminology outlined in Jackson (2004) and Gilles, Chakrabarti, and Sarangi

5An arbitrary cost structure would require costs to be dependent on the outcome of the game or the
network. The payoff specification then would become game dependent forcing us to give up generality
in the results.

6This is, for example, the foundation for the notion of two-way flow Nash networks introduced by
Bala and Goyal (2000) where a link initiated an agent functions like a telephone call.
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(2006).

2.1 Non-cooperative games

A non-cooperative game on a fixed, finite player set N = {1, . . . , n} is given by a

list (Ai, πi)i∈N where for every player i ∈ N, Ai denotes an action set. For every

a ∈ A and i ∈ N, we use a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i =
∏

j�=iAj to

represent the actions selected by the players other than i. Let πi : A → R denote

player i’s payoff function with A = A1 × · · · × An being the set of all action tuples,

and π = (π1, . . . , πn) : A → R
N be the composite payoff function.

An action ai ∈ Ai for player i ∈ N is called a best response to a−i ∈ A−i if for

every action bi ∈ Ai we have that πi(ai, a−i) � πi(bi, a−i). An action tuple â ∈ A is

a Nash equilibrium of the game (A,π) if for every player i ∈ N

πi(â) � πi(bi, â−i) for every action bi ∈ Ai.

Hence, a Nash equilibrium â ∈ A satisfies the property that for every player i ∈ N
the action âi is a best response to â−i.

2.2 Networks

In introducing the basic networks terminology we use established notation from Jack-

son and Wolinsky (1996), Dutta and Jackson (2003), and Jackson (2004). The reader

may refer to these sources for a more elaborate discussion.

We limit our discussion to non-directed networks on the player set N. In such

networks the two players making up a single link are both equally essential and the

links have therefore a bi-directional nature. Formally, if two players i, j ∈ Nwith i �= j

are related we say that there exists a link between players them. We use the notion of

a link to formalize the presence of some social relationship between individuals i and

j. We use the notation ij to describe the binary link {i, j}. Let gN = {ij | i, j ∈ N, i �= j}

be the set of all potential links.

A network g on N is now introduced as any set of links g ⊂ gN. In particular, the

set of all feasible links gN itself is called the complete network and g0 = ∅ is known

as the empty network. The collection of all networks is defined as

G
N = {g | g ⊂ gN}.

The set of (direct) neighbors of a player i ∈ N in the network g is given by

Ni(g) = {j ∈ N | ij ∈ g} ⊂ N.
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Similarly we introduce

Li(g) = {ij ∈ gN | j ∈ Ni(g)} ⊂ g

as the link set of player i in the network g. It only contains links with i’s direct

neighbors in g. We apply the convention that for every player i ∈ N, Li = Li(gN) =

{ij | i �= j} is the set of all potential links involving player i.

For every pair of players i, j ∈ N with i �= j we denote by g + ij = g ∪ {ij} the

network that results from adding the link ij to the network g. Similarly, g−ij = g\{ij}

denotes the network obtained by removing the link ij from network g.

Relationship building—formalized in a link formation process—results into a network

and within a network, benefits for the players are generated depending on how they

are connected to each other. For every player i ∈ N, the function σi : G
N → R

denotes her network payoff function. This function assigns to every network g ⊂ gN

a value σi(g) that is obtained by player i when she participates in network g. The

payoffs obtained through the function σi(g) should be interpreted as the net payoffs

that player i realizes through participating in the network g, i.e., player i’s gross

benefits from network g minus all costs of participating in g induced by player i.

The composite network payoff function is now given by σ = (σ1, . . . , σn) : G
N →

R
N. Note that the empty network g0 = ∅ generates (reservation) values σ(g0) ∈ R

N

that might be non-zero.

Several examples of standard network payoff functions for both noncooperative

and cooperative games are reviewed in Jackson (2004). Additionally, in van den

Nouweland (1993), Dutta, van den Nouweland, and Tijs (1998), Slikker (2000),

Slikker and van den Nouweland (2000), and Garratt and Qin (2003) these network

payoff functions are based on underlying cooperative games from where a lot of the

networks literature originated. For a review of this strand of the literature we refer

to van den Nouweland (2004).

2.3 Link-based stability concepts

We now present the definition of several stability conditions. We begin by introducing

stability concepts that allow for adding and breaking links separately before consid-

ering them together. Note that the stability concepts introduced below are based on

the properties of the network itself rather than strategic considerations of the players.

This latter viewpoint has been introduced seminally by Jackson and Wolinsky (1996)

and is further advocated in Jackson and Watts (2002), Jackson (2004), and Bloch

and Jackson (2006).
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First we introduce some auxiliary notation: Let σ : G
N → R

N be some network

payoff function. For a given network g ∈ G
N, we now define the following concepts

for σ:

(a) For every ij ∈ g the marginal benefit of this link for every player i ∈ N is given

by

Di(g, ij) = σi(g) − σi(g− ij) ∈ R. (1)

(b) For every player i ∈ N and link set h ⊂ Li(g) the marginal benefit to player i

of the link set h in g is given by

Di(g, h) = σi(g) − σi(g− h) ∈ R (2)

Using these additional tools we can give a precise description of the various link-

based stability concepts.

Definition 2.1 Let σ be a network payoff function on the player set N.

(a) A network g ⊂ gN is link deletion proof for σ if for every player i ∈ N and
every j ∈ Ni(g) it holds that Di(g, ij) � 0.
Denote by D(σ) ⊂ G

N the family of link deletion proof networks for σ.

(b) A network g ⊂ gN is strong link deletion proof for σ if for every player i ∈ N
and every h ⊂ Li(g) it holds that Di(g, h) � 0.
Denote by Ds(σ) ⊂ G

N the family of strong link deletion proof networks for σ.

(c) A network g ⊂ gN is link addition proof if for all players i, j ∈ N: σi(g+ ij) >

σi(g) implies σj(g+ ij) < σj(g).
Denote by A(σ) ⊂ G

N the family of link addition proof networks for σ.

(d) A network g ∈ G
N is strict link addition proof for φ : G

N → R if for all i, j ∈ N
it holds that ij �∈ g implies that σi(g+ ij) � σi(g).
Denote by As(σ) ⊂ G

N the family of strict link addition proof networks for σ.

(e) A network g ∈ G
N is strict* link addition proof for φ : G

N → R if for all
i, j ∈ N it holds that ij �∈ g implies that σi(g+ ij) < σi(g).
Denote by A�

s(σ) ⊂ G
N the family of strict* link addition proof networks for σ.

The two link deletion proofness notions are based on the severance of links in a

network by individual players. In particular, the notion of link deletion proofness

considers the stability of a network with regard to the deletion of a single link. This

6



concept was seminally introduced in Jackson and Wolinsky (1996). Strong link dele-

tion proofness considers the possibility that a player can delete any subset of her

existing links. Clearly, strong link deletion proofness implies link deletion proof-

ness. For further details on this concept we refer to Gilles, Chakrabarti, Sarangi, and

Badasyan (2005) and Bloch and Jackson (2006).

Similarly, link addition proofness (Jackson and Wolinsky 1996) considers the ad-

dition of a single link by two consenting players to an existing network. A network

is link addition proof if for every pair of non-linked players, at least one of these two

players has negative benefits from the addition of a link between them. Hence, in a

network requiring consent this link will never be added. Strict link addition proofness

that when adding a non-existent link both players have non-positive payoffs.

Strict link addition proofness requires that for every pair of non-linked players,

both of these players have non-positive benefits from adding the link between them,

i.e., it requires that neither player wants to add a link. Clearly in a network requiring

consent this link will never be added making it a significant strengthening of the link

addition proofness requirement.

Strict* link addition proofness is a new concept, which has not yet been consid-

ered in the literature. It is a stronger condition than strict addition proofness in the

sense that any link that is added to the network leads to strictly negative marginal

benefits for the participating players. It is clear that A�
s(σ) ⊂ As(σ) ⊂ A(σ).

The simplest notion combining both addition and deletion proofness was seminally

introduced by Jackson and Wolinsky (1996) as a stability concept called pairwise

stability. It combines link deletion proofness with link addition proofness. Given that

these two proofness conditions can be strengthened in various ways it is possible to

define a variety of modifications of this concept. We now present some definitions

below.

Definition 2.2 Let σ be a network payoff function on the player set N.

(a) A network g ∈ G
N is pairwise stable for σ if g is link deletion proof as well as

link addition proof.
Denote by P(σ) = D(σ) ∩A(σ) ⊂ G

N the family of pairwise stable networks for
the payoff function σ.

(b) A network g ∈ G
N is strictly pairwise stable for σ if g is strong link deletion

proof as well as strict link addition proof.
Denote by Ps(σ) = Ds(σ) ∩ As(σ) ⊂ G

N the family of strict pairwise stable
networks for the payoff function σ.
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(c) A network g ∈ G
N is strictly* pairwise stable for σ if g is strong link deletion

proof as well as strict* link addition proof.
Denote by P�(σ) = Ds(σ) ∩ A�

s(σ) ⊂ G
N the family of strict* pairwise stable

networks for the payoff function σ.

In the present paper we focus on the strongest combined requirement—strictly* pair-

wise stable networks. Given that players use the simplest myopic beliefs to activate

links, it is reasonable to use such a strong requirement. Normally the class of strict*

pairwise stable networks is a strict subset of the family of pairwise stable networks.

It is possible that in many cases this class is empty. We therefore first address the

question when these two classes of networks coincide. We identify three conditions

under which the main proofness conditions result into the same networks.

First, the network payoff function σ is network convex if for every network g ∈ G
N,

every player i ∈ N and every link set h ⊂ Li(g) :∑
ij∈h

Di(g, ij) � 0 implies Di(g, h) � 0.

Second, the network payoff function σ is link uniform if for every network g ∈ G
N,

and all players i, j ∈ N with ij /∈ g it holds that

σi(g) � σi(g+ ij) implies σj(g) � σj(g+ ij).

With these properties we can now state an equivalence result.

Proposition 2.3 Let the network payoff function σ be link uniform.

(a) Let σ be discerning in the sense that for every link addition proof network g ∈
A(σ) it holds that for all i, j ∈ N with ij /∈ g it does not hold that σi(g) =

σi(g+ ij) as well as σj(g) = σj(g+ ij). Then it holds that A�
s(σ) = A(σ).

(b) If σ is discerning on A(σ) as well as network convex, then it holds that

P�
s(σ) = Ps(σ) = P(σ).

Proof. The proof of this equivalence result is fully based on the Equivalence Theorem

in Gilles and Sarangi (2005).

To show assertion (a), we first refer to assertion (b) of the Equivalence Theorem

in Gilles and Sarangi (2005) which concludes that under link uniformity it holds

that A(σ) = As(σ). Hence for any network g ∈ A(σ) and ij /∈ g it holds that
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σi(g) � σi(g + ij) as well as σj(g) � σj(g + ij). Also by link uniformity we deduce

that

σi(g) = σi(g+ ij) implies σj(g) � σj(g+ ij) � σj(g),

which in turn implies that σj(g) = σj(g + ij). This contradicts that σ is discerning

on A(σ). Hence, σi(g) < σi(g + ij) as well as σj(g) < σj(g + ij). This implies that

g ∈ A�
s(σ). We now conclude that

A�
s(σ) ⊂ As(σ) = A(σ) ⊂ A�

s(σ).

which implies the assertion.

To show assertion (b) of Proposition 2.3 we note that this is an immediate con-

sequence of assertion (a) above and assertion (a) of the Equivalence Theorem in

Gilles and Sarangi (2005), which states that network convexity implies equivalence

of strong link deletion proofness and link deletion proofness.

2.4 The consent model of network formation

We base our analysis of confidence in link formation in the setting of the “con-

sent model of network formation” with two-sided link formation costs. In Gilles,

Chakrabarti, and Sarangi (2006) we provide a non-cooperative model of network for-

mation under consent based on Myerson’s model of network formation under binary

consent (Myerson 1991, page 448). Myerson’s model incorporates the fundamental

idea that pairs of players have to agree mutually on building links in any process

of network formation. In Gilles, Chakrabarti, and Sarangi (2006) we extended this

approach by introducing additive link formation costs. Here we provide a brief sum-

mary of this model.

Let N = {1, . . . , n} be a given set of players and ϕ : G
N → R

N be a fixed, but

arbitrary network payoff function representing the gross benefits that accrue to the

players in a network. For every player i ∈ N, we introduce individualized link forma-

tion costs represented by ci = (cij)j�=i ∈ R
N\{i}
+ . (Here, for some links ij ∈ gN it might

hold that cij �= cji.) Thus, the pair 〈ϕ, c〉 represents the basic benefits and costs of

link formation to the individuals in N.

For every player i ∈ N we introduce an action set

Ai = {(�ij)j�=i | �ij ∈ {0, 1} } (3)

Player i seeks contact with player j if �ij = 1. A link is formed if both players seek

contact, i.e., �ij = �ji = 1.

9



Let A =
∏

i∈NAi where � ∈ A. Then the resulting network is given by

g(�) = {ij ∈ gN | �ij = �ji = 1}. (4)

as stated, link formation is costly. Approaching player j to form a link costs player i

an amount cij � 0. This results in the following game theoretic payoff function for

player i:

πi(�) = ϕi(g(�)) −
∑
j�=i

�ij · cij (5)

where c is the link formation cost introduced at the beginning of this section.

The pair 〈ϕ, c〉 thus generates the non-cooperative game (A,π) as described

above. We call this non-cooperative game the consent model of network formation
with two-sided link formation costs, or for short the “consent model”.7 We summarize

the characterization of the Nash equilibria of the consent model.

Lemma 2.4 (Gilles, Chakrabarti, and Sarangi 2006) Let ϕ and c � 0 be given as
above. A network g ⊂ gN is supported by a Nash equilibrium in the consent model
(A,π) if and only if g is strong link deletion proof for the net payoff function ψ given by

ψi(g) = ϕi(g) −
∑

j∈Ni(g)

cij.

For a proof of this result we refer to Gilles, Chakrabarti, and Sarangi (2006).

A consequence of Lemma 2.4 is that the empty network g0 = ∅ is supported

as a Nash equilibrium in the consent model (A,π). Furthermore, g0 can even be

supported through a strict Nash equilibrium. Given the generality of the the consent

model, this is a very undesirable result for network formation theory. It implies that

equilibrium concepts based on different notions of stability have to be developed to

explain the emergence of non-trivial social networks.

3 Monadic stability

In this section we introduce an equilibrium concept for network formation models

that incorporates a (limited) form of boundedly rational anticipation or “myopic con-

fidence” into the process of link formation. This equilibrium concept, called monadic
7While we limit our discussion to the two-sided cost setting in the current paper, Gilles, Chakrabarti,

and Sarangi (2006) also discuss the consent model with one-sided link formation costs. Due to severe
coordination problems this model performs even worse than the model with two-sided link formation
costs.
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stability, captures the idea that social networks are mainly formed between acquain-

tances who have already have some beliefs about each other. Hence, our main mod-

eling assumption is that social networks arise only from links between a priori ac-

quaintances and not among random strangers.

That social relations are mainly formed between acquaintances is confirmed em-

pirically by Wellman, Carrington, and Hall (1988) using data from the East York

area. This approach also forms the foundation of the model in Brueckner (2003),

who models friendship based on links between players chosen from a given set of

acquaintances. In the context of our model, it is assumed that all players in N are ac-

quainted with each other without explicitly modeling how they get acquainted with

each other. Moreover, we assume that each player has knowledge about the payoffs

of the other players and formulates expectations about how the other players will

respond to link proposals.

Under monadic stability, a player assumes that other players are likely to respond

affirmatively to a proposal to form a link if the addition of this link is profitable for

them, i.e., only the implications of direct links affect the expectations. Note that since

further consequences are not taken into account, this form of behavior introduces a

rather myopic form of forward looking behavior. This limited form of farsightedness

thus models the anticipation of a player in a very specific manner—these beliefs

assume that other players will do the “correct” thing when asked whether to form

a link or not based only on that link. Also, this formulation of the belief structure

retains a fair degree of realism in the model.

We now formalize these myopic belief systems for the case of two-sided link for-

mation costs.

Let 〈ϕ, c〉 be a network payoff function and link formation cost. Let (A,π) be the

consent model with two-sided link formation costs generated by 〈ϕ, c〉.
Within this setting we are now able to introduce myopic beliefs of players regard-

ing the actions undertaken by the other players in the network formation process.

This forms the foundation for the formulation of confidence in link formation.

Definition 3.1 Let � ∈ A be an arbitrary action tuple. For every player i ∈ N we define
i’s belief system as expectations about direct links �i� ∈ A based on � by

(i) for every j �= i with ij ∈ g(�) we let

• �i�ji = 0 if ϕj(g(�) − ij) + cji > ϕj(g(�)) and

• �i�ji = 1 if ϕj(g(�) − ij) + cji � ϕj(g(�)),
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(ii) for every j �= i with ij �∈ g(�) we let

• �i�ji = 0 if ϕj(g(�) + ij) − cji < ϕj(g(�)) and

• �i�ji = 1 if ϕj(g(�) + ij) − cji � ϕj(g(�)),

(iii) and for all j, k ∈ N with j �= i and k �= i we define �i�jk = �jk.

In the myopic belief system introduced here each player assumes that other players

will respond according to their direct incentives to form a link or not. Of course, these

beliefs are rather limited since they may seem unreasonable if players can engage in

some forward looking behavior. On the other hand, these beliefs are myopic and

rather simple and can arise in the absence of substantial interaction among agents,

i.e., even among mere acquaintances. Hence, these beliefs form an excellent starting

point for link formation. The definition used allows for a sequential form of rational-

ity in the reasoning of the players during the network formation process which is at

the foundation of the following definitions of stability.

Definition 3.2 Let 〈ϕ, c〉 be given.

(a) A network g ∈ G
N is weakly monadically stable if there exists some action

tuple �̂ ∈ A such that g = g(�̂) and for every player i ∈ N: �̂i ∈ Ai is a best
response to �̂i�−i ∈ A−i for the payoff function π.

(b) A network g ∈ G
N is monadically stable if there exists some action tuple �̂ ∈ A

with g = g(�̂) for which g is weakly monadically stable such that for every player
i ∈ N player i’s myopic beliefs �̂i� are confirmed, i.e., for every j �= i it holds that
�̂i�ji = �̂ji.

Weak monadic stability of a network is founded on the principle that every player

i ∈ N anticipates—as captured by her expectations about direct links—that other

players will respond “correctly” to her attempts to form a link with them. Note that

�−i is fully replaced by �i�−i in the standard best-response formulation of equilibrium

for player i and is therefore irrelevant for the decision making process of i. Hence,

a player will agree to form a link with i when it is myopically profitable to form this

link. Similarly, unprofitable direct links initiated by i will be turned down.

Monadic stability strengthens the above concept by requiring that the beliefs of

each player are confirmed in the resulting equilibrium. Hence, we impose a self-

confirming condition on the equilibrium. This describes the situation that all players

are fully satisfied with their beliefs; the observations that they make about the re-

sulting network confirm their beliefs about the other players’ payoffs. This can be
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explained as the outcome of a process of updating the initial beliefs. The notion

of self-confirming equilibrium was developed seminally by Fudenberg and Levine

(1993).

To delineate the two monadic stability concepts for networks, we discuss a three

player example. This example shows that the set of monadically stable networks is

usually a strict subset of the weakly monadically stable networks.

Example 3.3 Consider three players N = {1, 2, 3} and assume that cij = 1 for all

players i ∈ N and all potential links ij ∈ Li, i.e., we assume uniform link formation

costs. Let the network payoff function ϕ be given by the table below. This table

identifies whether the network in question is weak monadically stable—indicated by

Mw—or whether it is monadically stable—indicated by M.

Network ϕ1(g) ϕ2(g) ϕ3(g) Stability
g0 = ∅ 0 0 0 Mw

g1 = {12} 0 3 0
g2 = {13} 0 0 3
g3 = {23} 0 0 0
g4 = {12, 13} 3 0 0
g5 = {12, 23} 2 3 3
g6 = {13, 23} 2 2 5 Mw

g7 = gN 3 5 6 M

We consider four networks in this example explicitly, namely g0, g5, g6 and g7 = gN.

Network g0: First we claim that this network is strongly pairwise stable for the given

payoff structure. Indeed, it is trivially SLDP and, given the network payoff

function, it is link addition proof as well.

Second, we argue that this network is weakly monadically stable. We claim that

it is supported by the strategy tuple �0 = ((1, 1), (0, 0), (0, 0)). Now we compute

�1�
0 = (−, (1, 0), (1, 0))

�2�
0 = ((0, 1),−, (0, 0))

�3�
0 = ((1, 0), (0, 0),−)

We emphasize that in this case Player 1 believes that both other players are

willing to make links with him, because there are direct benefits to forming

such links. However, the other players believe that Player 1 will not attempt to

make a link with them, because she has no direct (net) benefit from doing so.

Now we determine that
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• β1

(
�1�
0

)
= (1, 1) is the unique best response to �1�

0 ,

• β2

(
�2�
0

)
= (0, 0) is the unique best response to �2�

0 , and

• β3

(
�3�
0

)
= (0, 0) is the unique best response to �3�

0 .

Observe that Player 1 incurs link formation costs in this case and, hence, π1(�0) =

−2 and π2(�0) = π3(�0) = 0.

Also, note that g0 is not monadically stable. In the strategy tuple �0 player 1’s

belief system is not confirmed. He expects the other two players to form links

with him, although they do not do so.

Network g5: We argue that this network is not weakly monadically stable. The ob-

vious candidate action tuple to support g5 is given by �5 = ((1, 0), (1, 1), (0, 1)).

We compute

�1�
5 = (−, (1, 1), (0, 1))

�2�
5 = ((1, 0),−, (0, 1))

�3�
5 = ((1, 1), (1, 0),−)

We now derive that

• β1

(
�1�
5

)
= (1, 0) is the unique best response to �1�

5 ,

• β2

(
�2�
5

)
= (1, 0) is the unique best response to �2�

5 , and

• β3

(
�3�
5

)
= (0, 0) is the unique best response to �3�

5 .

From this it is clear that g5 cannot be supported by �5. This illustrates that weak

monadic stability requires playing best response to a specific set of beliefs for

each i ∈ N. Without such a restriction on the beliefs it would be possible to

support any strategy as weakly monadic stable. Moreover, observe that agents

only form beliefs about the behavior of their acquaintances with regard to direct

links, making it myopic but realistic. In fact, because of this, it is possible that

monadically stable equilibria do not exist. Finally, note that other action tuples

can be ruled out in similar fashion.

Network g6: First, we claim that this network is SLDP, but that it is not link addition

proof. Strong link deletion proofness follows trivially from the zero payoffs

listed for g2 and g3. Link addition proofness is not satisfied since adding the

link 12 would make player 2 better off, while player 1 is indifferent.

Second, we argue that this network is weakly monadically stable. We show
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that g6 is supported by the action tuple �6 = ((0, 1), (1, 1, ), (1, 1)). Again we

compute

�1�
6 = (−, (1, 1), (1, 1))

�2�
6 = ((1, 1),−, (1, 1))

�3�
6 = ((0, 1), (1, 1),−)

From this we conclude that

• (0, 1) and (1, 1) are both best responses to �1�
6 , i.e., β1

(
�1�
6

)
= {(0, 1), (1, 1)},

• β2

(
�2�
6

)
= (1, 1) is the unique best response to �2�

6 , and

• β3

(
�3�
6

)
= (1, 1) is the unique best response to �3�

6 .

This shows that �6 is indeed a best response to the generated myopic beliefs. We

therefore conclude that g6 is weakly monadically stable. On the other hand, g6

is not monadically stable. Indeed, in �6 the beliefs of player 2 are not confirmed.

Network g7: First, we claim that this network is strictly* pairwise stable. Strong

link deletion proofness follows trivially from the payoffs listed for all other

networks. The net payoffs in these networks are at most the net payoff in g7

for all players. The second condition is trivially satisfied since there are no links

that are not part of g7 = gN.

Second, we argue that this network is weakly monadically stable. We show

that g7 is supported by the action tuple �7 = ((1, 1), (1, 1, ), (1, 1)).8 Again we

compute

�1�
7 = (−, (1, 1), (1, 1))

�2�
7 = ((1, 1),−, (1, 1))

�3�
7 = ((1, 1), (1, 1),−)

From this we conclude that

• (1, 0) and (1, 1) are both best responses to �1�
7 , i.e., β1

(
�1�
7

)
= {(1, 0), (1, 1)},

• β2

(
�2�
7

)
= (1, 1) is the unique best response to �2�

7 , and

• β3

(
�3�
7

)
= (1, 1) is the unique best response to �3�

7 .

This shows that �7 is indeed a best response to the generated myopic beliefs.

We therefore conclude that g7 is weakly monadically stable.
8Obviously this is the only candidate action tuple for the complete network gN .
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Furthermore, all players’ beliefs are confirmed in �7. Thus, we conclude that g7

is monadically stable for �7.

This example clarifies the relation between weak monadic stability and the link based

stability concepts introduced earlier. Using the insights from this example we now

provide a more general characterization. �

3.1 Weak monadic stability

The following result gives a characterization of the relationship between weak monad-

ically stability and other link stability concepts.

Theorem 3.4 Let 〈ϕ, c〉 be such that c	 0, i.e., cij > 0 and cji > 0 for all i, j ∈ N.

(a) Every weakly monadically stable network g ∈ G
N in the consent model (A,π) is

link deletion proof for the network payoff function ψ given by

ψi(g) = ϕi(g) −
∑

j∈Ni(g)

cij. (6)

(b) Not every weakly monadically stable network in the consent model (A,π) is nec-
essarily strongly link deletion proof or link addition proof for the network payoff
function ψ.

(c) Not every strongly pairwise stable network for the network payoff function ψ is
necessarily weakly monadically stable in the consent model (A,π).

A proof of Theorem 3.4(a) is provided in Section 5 of the paper. This result is intuitive

since weak monadic stability requires that each agent is playing a best response to

their expectations about direct links with other players. Given that link formation is

costly, in a best response a player will never initiate a link that will be turned down.

Hence these networks are link deletion proof.

The proof of Theorem 3.4(b) is developed in Example 3.5 below. We recall that a

network is not link addition proof if one of the players is better off while the other is

no worse. Under weak monadic stability player i believes that player j will accept a

link if she is not worse off. Hence it is possible to have a weakly monadically stable

network that is not link addition proof. Moreover, since the beliefs only considers

each pairs of players separately, a weakly monadically stable network need not be

robust to the simultaneous deletion of multiple links. This is in contrast to the previ-

ous example where networks g0 and g6 are both weakly monadically stable as well

as SLDP.
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The proof of Theorem 3.4(c) is developed with the use of Example 3.6.

The next example shows the assertion stated in Theorem 3.4(b) and also shows

some other interesting features of our approach.

Example 3.5 We consider four players, i.e., N = {1, 2, 3, 4}. Under the hypothesis of

uniform link formation costs set at cij = 1 for all i, j ∈ N. The network benefits are

described by ϕ : G
N → R

N
+ with its values for some networks given in the following

table:

Network ϕ1(g) ϕ2(g) ϕ3(g) ϕ4(g)

g0 = ∅ 0 0 0 0
g1 = {12} 0 1 1 1
g2 = {13} 0 1 1 1
g3 = {14} 1 1 1 1
g4 = {12, 13} 1 2 2 1
g5 = {12, 14} 0 1 1 1
g6 = {12, 13, 14} 5 0 0 2

For all remaining networks g ∈ G
N : ϕ(g) = (0, 0, 0, 0). This results in the following

net payoffsψ applying (6) to the networks given in the table above. For the remaining

networks these net payoffs are negative.

Network ψ1(g) ψ2(g) ψ3(g) ψ4(g) Stability
g0 = ∅ 0 0 0 0
g1 = {12} -1 0 1 1
g2 = {13} -1 1 0 1
g3 = {14} 0 1 1 0
g4 = {12, 13} -1 1 1 1 Mw

g5 = {12, 14} -2 0 1 0
g6 = {12, 13, 14} 2 -1 -1 1

Claim 1: g4 is link deletion proof, but neither strong link deletion proof nor link addition
proof for ψ.

Indeed, deleting either 12 or 13 from the network would not improve any of the

involved player’s payoff. Also, deleting both her links to establish g0 is beneficial for

player 1. Similarly, adding link 14 to g4 would create g6, which is strictly beneficial

for player 1 and does not harm the net payoff for player 4.

Claim 2: g4 is weakly monadically stable.
For that we consider the supporting strategy tuple

� = ((1, 1, 1), (1, 0, 0), (1, 0, 0), (0, 0, 0))
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with g(�) = g4. We claim that this strategy tuple is a best response to the myopic

belief system �� associated with g4, given by

�1� = (−, (1, 0, 0), (1, 0, 0), (1, 0, 0))

�2� = ((1, 1, 1),−, (1, 0, 0), (0, 0, 0))

�3� = ((1, 1, 1), (1, 0, 0),−, (0, 0, 0))

�4� = ((1, 1, 1), (1, 0, 0), (1, 0, 0),−)

The best responses to these belief systems are given by

β1

(
�1�

)
= {(1, 1, 1)}

β2

(
�2�

)
= {(1, 0, 0)}

β3

(
�3�

)
= {(1, 0, 0)}

β4

(
�4�

)
= {(0, 0, 0), (1, 0, 0)}

This confirms that � is indeed composed of best responses to the players’ expectations

about direct links ��.9

We conclude that network g4 in this example is weakly monadically stable, but that

it is neither strong link deletion proof nor link addition proof. Thus it is not strongly

pairwise stable either. This shows the assertion stated as Theorem 3.4(b). �

The following example shows the assertion stated as Theorem 3.4(c). It also shows

some interesting auxiliary properties. In this example, players are enticed to aim at

the formation of networks that are very different from the network under considera-

tion.

Example 3.6 Consider three players N = {1, 2, 3} and assume that cij = 1 for all

players i ∈ N and all potential links ij, i.e., we assume uniform link formation costs.

Let the network payoff function ϕ be given by the table below. This table also gives

the modified network payoff function ψ.

9For completeness we remark that in this example the network g6 is not weakly monadically stable,
since it is not link deletion proof with respect to players 2 and 3.
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Network ϕ1(g) ϕ2(g) ϕ3(g) ψ1(g) ψ2(g) ψ3(g)

g0 = ∅ 0 0 0 0 0 0
g1 = {12} 2 2 2 1 1 2
g2 = {13} 3 0 0 2 0 -1
g3 = {23} 5 3 0 5 2 -1
g4 = {12, 13} 0 0 4 -2 -1 3
g5 = {12, 23} 0 2 0 -1 0 -1
g6 = {13, 23} 0 0 0 -1 -1 -2
g7 = gN 5 5 5 3 3 3

First, we note that g1 is strongly pairwise stable for ψ. Indeed, it is link deletion proof

with regard to the link 12. Also, it is link addition proof as can easily be deduced from

the given table.

Second, we remark that g0 and g1 are the only strong link deletion proof networks

for ψ in this example.

Claim 1: g0 is strong link deletion proof, but not weakly monadically stable.
The only plausible candidate strategy tuple to support g0 is given by �0 = (�01, �

0
2, �

0
3) =

((0, 0), (0, 0), (0, 0)). Now g(�0) = g0 and the myopic belief systems of all players for

�0 are given by

�0,1� = (−, (1, 0), (0, 0))

�0,2� = ((1, 0),−, (1, 0))

�0,3� = ((0, 1), (0, 1),−)

The unique best responses to these expectations about direct links are given by

β
(
�0,�

)
= ((1, 0), (0, 1), (0, 1)) with g

(
β
(
�0,�

))
= g3. This shows clearly that g0 is

not weakly monadically stable.

Claim 2: g1 is strongly pairwise stable, but not weakly monadically stable.
Consider the strategy given by

� = (�1, �2, �3) = ((1, 0), (1, 0), (0, 0)) .

Obviously, g(�) = g1. It is clear that � is the only plausible candidate for a monadically

stable strategy tuple supporting g1. However, the belief systems of all players for �

are given by

�1� = (−, (1, 0), (1, 0)) �= (−, �2, �3)

�2� = ((1, 0),−, (0, 0)) = (�1,−, �3)

�3� = ((1, 0), (0, 0),−) = (�1, �2,−)
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The unique best responses to the myopic belief system above is given by10

β (��) = {((0, 1), (1, 0), (0, 0))}

From this we conclude that g(β(��)) = g0. This indeed shows that g1 cannot be

supported as weakly monadically stable. �

Example 3.6 also shows two other properties. First, there exist situations in which

players aim for very different networks than the one under consideration. Indeed, in

network g1, Player 1 aims at forming network g2 based on her myopic beliefs about

the other players goals and payoffs. This is a deviation that is “lateral” in the sense

that it is not a sub- or super-network of the network under consideration.

Second, Example 3.6 shows that the reverse of Theorem 3.4(a) does not hold.

Namely, in the example we identified two strongly link deletion proof networks that

are not weakly monadically stable under two-sided link formation costs. For network

g0, the reason is that it is not link addition proof and the players involved try to build

these additional links through correct anticipation of the benefits to the other player

involved.

For network g1 the reason is more complex. Here the network under consider-

ation is link addition proof as well. However, belief system allows for the type of

lateral departures indicated in the discussion above. The exclusion of such lateral

departures requires the further strengthening of the notion of weak monadic stability

and beliefs that are not so simple.

3.2 Monadic stability and strict* pairwise stability

Next we turn to the analysis of regular monadic stability. The self-conformation

requirement in this equilibrium concept strengthens the properties of the resulting

equilibrium networks considerably. We first explore the relationship between the

monadic stability condition and the weak monadic stability requirement.

Proposition 3.7 Let 〈ϕ, c〉 be given.

(a) Every monadically stable network g ∈ G
N is weakly monadically stable for 〈ϕ, c〉

such that the supporting belief system �̂ satisfies the property that �̂ij = �̂ji for all
pairs of players i, j ∈ N.

10In particular, the best response of player 1 to ��
1 is unique and given by β1(��

1) = (0, 1) in which
player 1 aims for the formation of network g2 instead of g1 .
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(b) Not every weakly monadically stable network g for 〈ϕ, c〉 such that the support-
ing belief system �̂ satisfies the property that �̂ij = �̂ji for all pairs of players
i, j ∈ N is monadically stable.

For a proof of Proposition 3.7(a) we refer to Section 5 of this paper. Assertion 3.7(b)

is shown by Example 3.8 below.

Proposition 3.7 states that the self confirming condition in the monadic stability

concept implies the bi-directionality of the steady state that results from updating

the myopic belief systems. This updating process is described by the weak monadic

stability condition.

Next we show that this conclusion cannot be reversed. Hence, there exist net-

works that are weakly monadically stable and satisfy the bi-directionality condition

formulated in Proposition 3.7 but underlying the beliefs are not self confirming.

Example 3.8 Consider three players N = {1, 2, 3} and as before assume that cij = 1

for all players i ∈ N and all potential links ij ∈ Li. We assume that the network pay-

off function ϕ is additive over the links. The basic payoff information is link-based

and, thus, represented in the following table:

Link ϕ1 ϕ2 ϕ3

12 0 2 1
13 4 0 4
23 0 0 2

The table below provides the modified network payoff function ψ based on the as-

sumption that benefits accrue in an additive fashion.

Network ψ1(g) ψ2(g) ψ3(g) Stability
g0 = ∅ 0 0 0
g1 = {12} -1 1 1
g2 = {13} 3 0 3 Mw

g3 = {23} 0 -1 1
g4 = {12, 13} 2 1 4
g5 = {12, 23} -1 0 2
g6 = {13, 23} 3 -1 4
g7 = gN 2 0 5

First, we claim that network g2 is weakly monadically stable. Consider the strategy

tuple given by

� = (�1, �2, �3) = ((0, 1), (0, 0), (1, 0)) .
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Obviously, g(�) = g2. The myopic belief systems of all players for � are given by

�1� = (−, (1, 0), (1, 0))

�2� = ((0, 1),−, (1, 1))

�3� = ((0, 1), (0, 0),−)

The unique best responses to the myopic belief system above is given by

β (�) = {((0, 1), (0, 0), (1, 0))}

From this we conclude that g2 is indeed weakly monadically stable and that it satisfies

the bi-directionality condition formulated in Proposition 3.7. However, g2 is not

monadically stable, since �1�
21 �= �21 as well as �2�

32 �= �32. �

Next we turn to the characterization of monadic stability in terms of link stability.

The following result can be indicated as the main result of this paper. It states that

monadic stability is equivalent to strict* pairwise stability. This allows us to conclude

that monadic stability supports a non-trivial collection of equilibrium networks.

Theorem 3.9 Let 〈ϕ, c〉 be such that c 	 0. A network g ∈ G
N is monadically stable

for 〈ϕ, c〉, if and only if g is strictly* pairwise stable for the network payoff function ψ
given in Theorem 3.4.

For a proof of Theorem 3.9 we refer to Section 5 of this paper in which we have

collected the proofs of the main theorems. The proof first demonstrates that every

strictly* pairwise stable network is weakly monadically stable. It then shows that the

beliefs are also self confirming making it monadically stable.

4 Conclusion

We base our approach to link building—and through that to network formation—

on the principle that links are formed between myopically rational acquaintances.

We formulate myopic belief systems through which these players perceive the social

setting in which they operate. The stable states of the resulting learning processes

are identified as the class of weakly monadically stable networks. These networks are

only truly stable if all players have their formed beliefs confirmed in the equilibrium

state. This results into the subclass of monadically stable networks.

In this paper we show that—although the belief systems on which the players’

learning processes are founded, are myopic and very simple—the resulting monad-

ically stable networks have extremely strong and appealing properties; they exactly
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form the class of strictly* pairwise stable networks. In these networks no players has

incentives to discard links and all pairs of non-linked players agree that building such

a link only results into lower payoffs. Our main result, thus, unequivocally shows that

behavior based on myopically formed beliefs can lead to very appealing and sensible

social structures.

Furthermore, through auxiliary results we conclude that there is no relationship

between weak monadic stability and strong link deletion proofness, i.e., one does not

imply the other. Hence, there is also no relationship between weak monadic stability

and strictly pairwise stable networks. We also conclude that weakly monadically

stable networks satisfy link deletion proofness. However, they are not link addition

proof. Hence, weakly monadically stable networks are not pairwise stable. Finally,

we verify that the reverse implication does not hold.

With respect to monadic stability, we find that the set of monadically stable net-

works is a strict subset of the weakly monadically stable networks. Furthermore, not

every weakly monadically stable network is strong link deletion proof indicating that

they cannot be strictly* pairwise stable either.

In a recent paper Belleflamme and Bloch (2004) investigate a related stability

concept. They look at reciprocal market sharing agreements by firms in oligopolistic

markets and procurement auctions. They consider a finite number of firms, all of

which are associated with a separate captive market. In the oligopolistic context

this market is called the “home market”. In the the procurement auction scenario

this is the market in which the firm has bidding privileges. Firms may enter each

others’ markets unless they enter into reciprocal market sharing arrangements by

forming links with each other. The stable networks identified in this context also

satisfy monadic stability.

Finally, we turn to the relationship between monadic stability and the popular

pairwise stable networks. Proposition 2.3 states that if the payoff function satisfies

network convexity, link uniformity, and is discerning, then all strictly* pairwise stable

networks are also pairwise stable. These two condition are satisfied for instance by

the connections model of Jackson and Wolinsky (1996). Hence we can conclude that

under these conditions, strictly* pairwise equilibria are pairwise stable. Hence the

class of pairwise stable networks also satisfies monadic stability.

5 Proofs of the main theorems

In this section we address the proofs of Theorem 3.4(a), Proposition 3.7, and Theo-

rem 3.9. We recall that the assertions stated as Theorem 3.4(b) and (c) are shown
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through the examples developed in Section 4 of this paper.

As a preliminary to the actual proofs, we develop some simple auxiliary insights

for weakly monadically stable networks. Suppose that g ∈ G
N is weakly monadically

stable relative to 〈ϕ, c〉.
Then there exists some action tuple �̂ ∈ A such that g = g(�̂) and for every player

i ∈ N: �̂i ∈ Ai is a best response to �̂i�−i ∈ A−i for the payoff function π.

For this setting we state three auxiliary results. In these results we do not as-

sume that link formation costs are strictly positive; in each assertion the assumptions

regarding these costs are stated explicitly.

Lemma 5.1 If �̂i�ji = 0 then �ij = 0 is a best response to �̂i�.

Proof. Clearly, if �ij = 1 is selected, i incurs only costs cij � 0 and no benefits. This

implies that player i does not benefit from trying to establish link ij. Hence, �ij = 0

is a best response to �̂�i.

Lemma 5.2 If �̂i�ji = 0 and cij > 0, then �ij = 0 is the unique best response to �̂i�.

Proof. Clearly, if �ij = 1 is selected, i only incurs strictly positive costs cij > 0 and

no benefits. This implies that player i makes a loss from trying to establish link ij.

Hence, �ij = 0 is the unique best response to �̂�i.

Lemma 5.3 If ij ∈ g(�̂) with cij > 0 and cji > 0, then �̂i�ji = �̂
j�
ij = 1.

Proof. First remark that ij ∈ g(�̂) if and only if �̂ij = �̂ji = 1. The negation of the

assertion stated in Lemma 5.2 applied to �̂ij = 1 and �̂ji = 1 independently now

implies that �̂i�ji = �̂
j�
ij = 1.

Proof of Theorem 3.4(a)

We now proceed with the proof of Theorem 3.4(a) under the assumption that the

cost structure c is strictly positive.

Suppose that g ∈ G
N is weakly monadically stable relative to 〈ϕ, c〉. Then there

exists some action tuple �̂ ∈ A such that g = g(�̂) and for every player i ∈ N: �̂i ∈ Ai

is a best response to �̂i�−i ∈ A−i for the payoff function π. Of course �̂i ∈ Ai is a best

response to player i’s myopic belief system �̂i�.

Suppose that g is not link deletion proof. Then there exists a player i ∈ N with ij ∈ g
for some j �= i and ψi(g − ij) > ψi(g), or ϕi(g − ij) + cij > ϕi(g). By definition,

�̂
j�
ij = 0, and hence from Lemma 5.2 �ji = 0 is the unique best response to �̂j�. Since

ij ∈ g by assumption it has to hold that �̂ji = 1. This contradicts the hypothesis that

24



�̂j is a best response to �̂j�.

This contradiction indeed shows that g has to be link deletion proof relative to ψ.

Proof of Proposition 3.7(a)

Let g ∈ G
N be monadically stable and let action tuple �̂ ∈ A support g as such.

Suppose that ij /∈ g with �̂ij = 1 and �̂ji = 0. Then by Lemma 5.1 �̂ij = 1 implies

that �̂i�ji = 1. But this would then imply that �̂ji �= �̂i�ji , violating the monadic stability

condition.

Proof of Theorem 3.9

First we show that strict* pairwise stability for ψ implies monadic stability for 〈ϕ, c〉
under the hypothesis that c	 0.

Let g ⊂ gN be a network that is strictly* pairwise stable with regard to the net payoff

function ψ. Then g is strong link deletion proof and satisfies the property that

ij �∈ g ⇒ ψi(g+ ij) < ψi(g) as well as ψj(g+ ij) < ψj(g).

Hence, this implies that

ij �∈ g ⇒ ϕi(g+ ij) − cij < ϕi(g) as well as ϕj(g+ ij) − cji < ϕj(g). (7)

With g we now define for all i ∈ N:

• �̂ij = 1 if ij ∈ g, and

• �̂ij = 0 if ij �∈ g.

We investigate whether the given strategy profile �̂ is indeed a best response to �̂� as

required by the definition of weak monadic stability.

Case A: ij �∈ g.

From(7) it now follows immediately that �̂i�ji = �̂
j�
ij = 0. From the fact that cij > 0 and

cji > 0 and the beliefs it follows from Lemma 5.2 that Case A implies that �̂ij = 0 is

the unique best response to �̂i� as well as that �̂ji = 0 is the unique best response to

�̂j�.

Hence, for Case A the strategy satisfies the condition imposed by weak monadic sta-

bility.

Case B: ij ∈ g.

In this case �̂ij = �̂ji = 1.

Link deletion proofness of g now implies that �̂i�ji = 1 or else (7) is contradicted.
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Cases A and B imply now that

ij ∈ g if and only if �̂i�ji = �̂
j�
ij = 1 (8)

Applying strong link deletion proofness and the conclusion from Case A leads us to

the conclusion that �̂i is the unique best response to �̂i�. This in turn implies that �̂

indeed supports g as a weakly monadically stable network.

Finally, it is immediately clear from (8) and the definition of �̂ that for all i, j ∈
N : �̂i�ji = �̂ij. Thus, we conclude that �̂ supports g as a monadically stable network.

This completes the proof of the assertion.

Second, we show that monadic stability for 〈ϕ, c〉 implies strict* pairwise stability for

ψ under the hypothesis that c	 0.

Let g be monadically stable for 〈ϕ, c〉. Then there exists some action tuple �̂ ∈ A such

that g = g(�̂) and for every player i ∈ N: �̂i ∈ Ai is a best response to �̂i�−i ∈ A−i for

the payoff function π. Furthermore, �̂i� = �̂−i.

From Theorem 3.4(a) we already know that g has to be link deletion proof forψ since

g is weakly monadically stable. Hence, for every ij ∈ g we have that ϕi(g − ij) +

cij � ϕi(g). Now through the definition of the belief systems and the self-confirming

condition of monadic stability we conclude that for every ij ∈ g :

�̂ij = �̂
j�
ij = �̂ji = �̂i�ij = 1.

Let h ⊂ Li(g). Define �h ∈ Ai by

�hij =

{
�̂ij if ij /∈ h
0 if ij ∈ h

Then g(�h, �̂−i) = g \ h. Since �̂i is a best response to �̂i� = �̂−i
11 it has to hold that

πi(�
h, �̂−i) � πi(�̂). Hence,

ϕi(g \ h) +
∑
ij∈h

cij � ϕi(g).

This in turn implies thatψi(g\h) � ψi(g). Thus, since i and hwere chosen arbitrarily,

network g is indeed strong link deletion proof.

Next, let ij /∈ g. Then �̂ij = 0 and/or �̂ji = 0. Suppose that �̂ji = 0. Then by the

self-confirming condition of monadic stability it has to hold that �̂i�ji = �̂ji = 0. Hence

by Lemma 5.2 �̂ij = 0. Thus we conclude that for every ij /∈ g :

�̂ij = �̂
j�
ij = �̂ji = �̂i�ij = 0.

11Here we apply again the self-confirming condition that is satisfied by �̂.
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This in turn implies through the definition of the belief system that ϕi(g + ij) −

cij < ϕi(g) as well as ϕj(g + ij) − cji < ϕj(g). Or ψi(g + ij) < ψi(g) as well as

ψi(g+ ij) < ψi(g). This is desired requirement for strict* pairwise stability.
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