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The Data Quality Concept of Accuracy in the

Context of Public Use Data Sets

Abstract

Like other data quality dimensions, the concept of accuracy is often

adopted to characterise a particular data set. However, its common spec-

ification basically refers to statistical properties of estimators, which can

hardly be proved by means of a single survey at hand. This ambiguity can

be resolved by assigning ‘accuracy’ to survey processes that are known to

affect these properties. In this contribution, we consider the sub-process of

imputation as one important step in setting up a data set and argue that

the so called ‘hit-rate’ criterion, that is intended to measure the accuracy of

a data set by some distance function of ‘true’ but unobserved and imputed

values, is neither required nor desirable. In contrast, the so-called ‘infer-

ence’ criterion allows for valid inferences based on a suitably completed

data set under rather general conditions. The underlying theoretical con-

cepts are illustrated by means of a simulation study. It is emphasised

that the same principal arguments apply to other survey processes that

introduce uncertainty into an edited data set.

Key words: Survey Quality, Survey Processes, Accuracy, Assessment of Imputa-

tion Methods, Multiple Imputation.

JEL: C42, C81, C11, C13, C15
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1 Introduction

(1) At the latest since the mid-1990’s, Official Statistics is more and more gripped

by what is occasionally called the quality revolution. In the triangle of severe bud-

get cuts, increasing user demands and the competition with a growing number of

scientific and other non-official data providers, Official Statistics is pushed to op-

timise the range and particularly the quality of services offered. At any rate, out

of this needful process a variety of survey quality definitions emerged. Current

approaches decompose this rather general term into handier subordinated con-

cepts, like relevance, timeliness, coherence, accessability, etc. (e.g. in Brackstone,

1999; Eurostat, 2003; Biemer und Lyberg, 2003). While the emphasis of these

sub-concepts may vary from approach to approach, they all have in common to

consider accuracy as a major quality objective.

(2) The definitions of accuracy given by Brackstone (1999) and Eurostat (2003)

basically refer to the deviation of an arbitrary statistic from its respective pop-

ulation value. However, since the population parameter is generally unknown

and the statistic is computed from a randomly selected sample, this approach

can hardly be given a clear statistical sense. Instead, adopting, for example, the

so called frequentist point of view, allows for reasoning about this deviation in

terms of the statistical properties of the underlying estimator over hypothetically

infinite cycles through the survey and the subsequent estimation processes. This

is regularly done in terms of the well-known Mean Squared Error (MSE) or its

2



systematic squared bias and random variance component

MSE
(
θ̂
)

:= E

[(
θ̂ − θ

)2
]

=
(
E θ̂ − θ

)2

+ Var θ̂ ,

where θ̂ denotes the estimator of a population parameter θ. However, the concept

of accuracy, like any of the data quality dimensions, is intended to be applied

in assessing particular surveys. Thus, the question arises as to how a single

survey at hand can be declared ‘accurate’ by referring to statistical properties of

estimators, which, then again, cannot be proved by means of this single survey.

(3) An answer arises from shifting the focus from the particular data set towards

the survey processes it emanates from. Biemer und Lyberg (2003) call this the

process view of survey quality, where “one has to assure quality by using depend-

able processes, processes that lead to good product characteristics. The basic

thought is that product quality is achieved through process quality” (Biemer

und Lyberg, 2003, p. 14). From this point of view, survey quality may rather

be considered as a general objective to be accomplished throughout the entire

survey process by applying in a sense appropriate methods in each process step

of data production. In taking up this as a starting point, it is crucial to clarify,

what is meant by ‘good product characteristics’ in terms of the overall survey

process, its derived sub-processes and particularly with respect to the different

sub-concepts of survey quality.

(4) For the accuracy objective, ‘product characteristics’ of a survey can, in a very

general sense, be considered to arise from its intended context of use, that on his
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part is determined by the estimators applied – and this is where the circle closes:

Given an estimator θ̂ that is to be applied to a particular survey, then this survey

can be said to be accurate (with respect to θ̂) if the preceding data production

processes keep the assumptions associated with θ̂. ‘Accuracy’ then primarily

refers to the realisation of specific methodological requirements of sub-processes

like sampling, editing, imputation, etc., that are known to affect the statistical

properties of estimators computed from the processed data. Thus the rather

abstract accuracy objective resolves into the methodological problem of how to

appropriately perform the related sub-process in order to assure the preconditions

for valid inferences – and this can be done irrespective of the particular data set

to be assessed.

(5) In practical terms this means to tell the accuracy story right from the end:

In the first place one has to have a notion of what kind of estimators will be fit-

ted to the data and particularly of the assumptions they depend on. In addition

one might take into account the conditions for assessing the statistical proper-

ties of the estimators in terms of their estimated variance, the computation of

confidence intervals, etc. Only then, one can seek survey methods that meet all

these assumptions and thus ensure the statistical properties of the estimators to

be applied. That is, whether or not a data set can be considered accurate, solely

depends on the analyst’s purposes which are reflected in the selection of estima-

tors applied: a particular data set may be accurate for a specific analysis and
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may not for another. For an example from the design-based context, consider the

Horvitz-Thompson estimator for weighted totals (Horvitz und Thompson, 1952),

that essentially depends on the appropriate realisation of the random sampling

process from a finite population, and in case of violations is not guaranteed to

result in valid inferences.

(6) Providing valid inferences from in this sense accurate data sets should not

be an issue in the classical field of application in Official Statistics, where the

processes of data production and analysis are in one hand, and the analytical

purposes are restricted to rather straightforward estimators like totals or means.

An entirely new situation emerges when Official Statistics provides micro data,

either for internal use like for fitting complex National Account models or by

releasing public and scientific use files. In both cases, the data producer is not

a priori aware of which estimators will be applied to the data, and thus has

to perform the survey processes, such that the resulting data set allows for a

preferably wide range of analyses.

(7) In this contribution we address the problem of how the term ‘accuracy’ can

be assigned a clear meaning within the sub-process of imputation, i.e. the substi-

tution of unobserved or erroneous values during data editing. Special attention

is paid to the requirements of imputing public use data sets. For that purpose,

the specific methodological requirements of imputation methods need to be ex-

amined, that potentially lead to accurate data in the above sense. This is subject
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to the second section that deals with three basic evaluation approaches for impu-

tation methods, shedding some light on the methodological requirements under

discussion. It should be noted however, that imputing for non-observed values

is just one component in the process of setting up a public use data base. The

same principal arguments apply to any sub-process embedded into the survey

process, as long as they affect inferences by introducing uncertainty to the data.

In section three we discuss different imputation methods and illustrate possible

problems associated with them via a simulation study. Conclusions and some

discussion can be found in section four.

2 Assessment of imputation methods

(8) Consider a data set Y with observed elements in Yobs and values declared

to be missing in Ymis. Then any imputation method is intended to compute

in a sense reasonable substitutions yij ← ŷij ∈ Yimp for any missing element

yij ∈ Ymis. Subsequent inferences are based on the corresponding completed data

set Ŷ consisting of Yobs and the imputed values in Yimp. In the remainder we

occasionally refer to the (n, p) data matrix Y and the corresponding completed

matrix Ŷ as illustrated in figure 1. In order to keep notation simple, Y is assumed

to have an univariate missing pattern, i.e. the variables Y1 to Yp−1 are completely

observed and only the values yi′p with i ′ = ncc + 1, ..., n of the p-th variable

are declared to be missing. Within the observed part of Y one can distinguish
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Figure 1: Incomplete data matrix Y with a univariate missing pattern, consisting of

observed elements in Yobs and values declared to be missing in Ymis. Substituting

Ymis by imputations in Yimp yields the completed matrix Ŷ.

between the (ncc, p) matrix of the complete observations Ycc and the (n, p − 1)

matrix of the complete variables Ycv.

(9) Assume there are two alternative imputations at hand for substituting a

missing value, both of them within the co-domain of the incomplete variable and

satisfying the predefined editing rules. To decide for one value and rejecting

the other remains arbitrary, unless additional information about the (statistical)

properties of the underlying imputation methods is taken into account. These

properties can be determined analytically or at least in appropriate simulation

studies. Reviewing the literature reveals a number of evaluation criteria for impu-
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tation methods, which can in general be subsumed under three basic approaches:

(a) The inference criterion: Provided an arbitrary estimator applied to the

complete data set Y results in a valid inference with respect to the corre-

sponding estimand. Then an imputation method should complete a data

set such that applying the same estimator to the completed data set Ŷ

results in a valid inference as well (cf. Rubin, 1996).

(b) The hit-rate criterion: Each imputed value ŷi′p ∈ Yimp should lie as close

as possible to the corresponding unobserved value yi′p ∈ Ymis, such that an

arbitrary distance measure d (·) is minimised over Yimp,

n∑

i ′=ncc+1

d (yi′p, ŷi′p)
!
= min .

(c) The plausibility criterion: Each imputed value ŷi′p ∈ Yimp needs to be

covered by the co-domain Yp of the random variable Yp and causes no

inconsistencies with observed or other imputed values in Ŷ. When ŷi′p is

generated during data editing, the i′-th observation should finally pass all

specified data checks.

(10) The inference criterion directly assigns the general accuracy specification

to the sub-process of imputation. Hence it can be assumed to be appropriate,

but still has to prove its theoretical foundation and practical realisation, which is

subject to the following section. However, the approaches (b) and (c) need to be

examined with respect to the central question of how they can be related to the
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general accuracy specification, i.e. whether or not a data set completed with an

imputation method that fulfils at least one of these criteria ensures the statistical

properties of potentially applied estimators.

(11) The hit-rate criterion refers to the intuitive idea, that an optimal imputation

directly substitutes a missing value by its corresponding unobserved counterpart.

Provided this ideal case, it even covers the inference criterion, since imputing

true values obviously results in consistent estimators and hence in an accurate

data set in the proposed statistical sense. In addition, the hit-rate criterion is

straightforward to implement and provides results which are easy to interpret.

These features make it a common choice for evaluation studies on imputation

methods applied to data sets with generated missing values. Chambers (2001)

compiles a number of measures that among others implement the hit-rate criterion

for simulation studies of this kind. Even though it is “hardest to achieve”, for him

the hit-rate criterion is particularly relevant when the edited data set is publicly

released by the data supplier or is internally used to determine prediction models

(Chambers, 2001, 11).

(12) The hit-rate criterion is based on the implicit assumption, that the un-

observed values of Yp follow a specific function that can to some extent be ap-

proximated by an appropriate imputation method. Thus, unless this function

is deterministic and known, imputations are in fact (uncertain) point estimates

that are considered to be optimal if a predefined loss function d (·) is minimal.
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However, evaluating the value of d (·) for a given data set and a given set of

imputations ignores that Yimp is a random variable, with its values following a

stochastic instead of a deterministic function. That is, the deviations measured

by the distance function d (·) are subject to the variability of the random variable

Yimp and Yobs (in a model-based view), or Yimp and the selection indicators (in a

design-based view). Hence generating imputed values that are as close as possible

to their unobserved counterparts is restricted by conceptual bounds that are not

reflected and are not even reflectable by the hit-rate approach.

(13) Reinforcing these conceptual objections, a simple example by Rubin (1996)

shows, that the hit-rate criterion even fails in producing valid estimators. Given

a biased coin with the probability of realising ‘head’ being 0.6. The prediction

model that both sides of the coin are ‘heads’ yields a hit rate of 0.6·1.0+0.4·0.0 =

0.6. In contrast, applying the true model results in the lower hit rate 0.6 · 0.6 +

0.4 · 0.4 = 0.52. With respect to the hit-rate criterion, the first model is to be

selected as imputation model, even though it results in seriously biased estimators

by systematically overestimating the fraction of ‘heads’ from the completed data

set. For conceptual reasons the deterministic hit-rate criterion obviously fails

the crucial demand of ensuring the statistical properties of estimators within

the imputation process, and thus is inappropriate to found the general accuracy

objective.

(14) The plausibility criterion might be applied individually or in combination

10



with one of the other criteria. The first way is regularly chosen by data suppliers

and particularly National Statistical Agencies that are editing their data manually

by fitting corrections such that none of some predefined editing rules are violated.

Since accounting for several editing rules (and their combination) is a profoundly

complex problem, it is regularly resolved in an inscrutable process of trial-and-

error accompanied by expert-knowledge of clerical staff. Of course, the data

quality and particularly the accuracy of the resulting data set cannot be assessed

in statistical terms, since the underlying process remains arbitrarily. In the second

case, the plausibility criterion is applied in a two-step process. Firstly, missing

values are imputed in accordance with, for example, the inference criterion, and

secondly, Ŷ is subject to a subsequent pass through the specified checks in order

to avoid implausible (combinations of) values. In doing so, marginal distributions

tend to be distorted and bias is likely to be introduced in corresponding estimators

(for example raising low or zero incomes to a minimum living wage increases the

averaged incomes computed from the completed data set). Thus the absurd

situation emerges that assuring plausibility in terms of the associated criterion

may cause a loss of accuracy in terms of the inference criterion. However, in

both cases the usually adopted deterministic view of ‘correcting’ values due to

the plausibility criterion ignores the uncertainty inherent in (a) the decision as to

which values are treated as ‘incorrect’ if combinations of values fail a data check,

and, (b) the new values imputed.
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3 Computing valid inferences from Ŷ

(15) Evaluation of an imputation method by means of the inference criterion has

to focus on distributional characteristics of the resulting estimator of interest.

For our discussion we will concentrate on the first two (central) moments of

this distribution. Thus, considering an estimand θ, an appropriate imputation

method particularly needs to provide (asymptotically) unbiased estimators θ̂ as

well as valid estimators of the variance of θ̂ by taking into account all sources of

variability. In the following paragraphs both topics will briefly be addressed in

terms of the multiple imputation theory by Rubin (1987).

(16) Unless the so called Missing at Random (MAR) assumption fails, the goal

of arriving at (asymptotically) unbiased estimators for the mean of a variable

with missing values can even be achieved with rather unsophisticated conditional

mean imputation procedures (Little und Rubin, 2002). The MAR assumption

states, that the probability of observing a value in Y is independent from its

unobserved counterpart, i.e. generally

P (yij is observed |Y) = P (yij is observed |Yobs)

for all possible values in Ymis (Little und Rubin, 2002, 12). On the other hand,

it is straightforward to show, that applying statistical standard procedures to

data sets with imputed unconditional or conditional means causes a substantial

underestimation of the variance and co-variances of the incompletely observed

12
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Figure 2: Example of an Stochastic Regression Imputation in a bivariate linear setting

with Yp regressing on Yp−1. Complete observations are denoted by “X” and the incom-

plete observations with missing values in Yp by “�”. The associated imputed values

are raised from the conditional means (“�”) on the regression line by adding white

noise (“ε”).

variable, that moreover increases with the fraction of missing values (Little und

Rubin, 2002, 61). This is due to the fact that imputed means just inflate the

sample by adding values right at the centre of the (conditional) distributions

and thus have no impact on the calculation of statistics that are based on the

deviation from the mean.

(17) This shrinkage of the scatter-plot can be avoided by adding white noise

to the imputed values. For example, assuming that an incomplete variable Yp is

regressed on the completely observed variables Y1, ..., Yp−1, the regression impu-
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tation model is

yi′p ← ŷi′p = β̂0 (Ycc) +

p−1∑

j=1

β̂j (Ycc) yi′j + εi′ ,

with the regression parameters computed from Ycc (see figure 2 for this linear

variant of Stochastic Regression Imputation). Within this approach, a natural

choice for the distribution of ε is the Gaussian noise model

ε ∼ N

(

0 ;
1

ncc − 2

ncc∑

i=1

(ŷip − yip)
2

)

,

with the variance term representing the estimated variance of the residuals com-

puted in Ycc (other noise models are examined by Schenker und Taylor, 1996).

Provided the selected noise model is appropriate and the MAR assumption holds,

stochastic regression imputation results in unbiased estimators of the mean, the

variance, co-variances and even the parameters for regressing Yp on Y1, ..., Yp−1,

and vice versa (Little und Rubin, 2002, 65).

(18) However, the second issue of evaluating the variance of estimators due to

the inference criterion is still untreated. In the previous paragraphs and partic-

ularly when rejecting the hit-rate criterion, imputed values were considered as

estimates of unobserved values rather than straightforward insertions. Thus a

valid estimation of the variance of an (asymptotically unbiased) estimator needs

to reflect two sources of variation: (a) the general variance fraction due to the

observed values, and (b) the variance fraction due to the prediction of the missing

values during imputation.
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(19) This point is easily demonstrated by means of a simple model-based sim-

ulation study that compares different imputation strategies with respect to the

statistical properties of estimators applied to completed data sets. Point of ref-

erence is the (unbiased) estimation of the mean of Yp by the sample mean in the

complete data case (COM), i.e. with all values observed. For this purpose we

generated 100 values from a normally distributed variable with mean θ = 2 and

variance σ2 = 4. From the complete data set 30% of the values were deleted such

that the missing values were missing completely at random (MCAR), i.e.

P (yp is observed |Y) = P (yp is observed) .

for all possible values in Y (Little und Rubin, 2002, 12). After having imputed

for the deleted values, the completed data set was analysed, i.e. we estimated

the mean by the sample mean of the completed data set, computed an estimate

of the variance of the estimator and finally tested the hypothesis H0 : θ = 2 with

α = 0.05. The simulation cycle of generating a data set, deleting values, imputing

for Ymis and analysing the completed data set was repeated 20000 times. Finally,

over the 20000 cycles, the mean of the estimates (m), the square root of the mean

of estimated variances (SDE), the standard deviation of the estimates (SD) and

the proportion of rejections of the null hypothesis was calculated for the complete

date case as well as for the imputation strategies applied (cf. table 1).

(20) There were four imputation strategies applied in the simulation study. We

will first focus on two so called single imputation strategies: A missing value
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is replaced by the sample mean of the observed values in Ycc (MEAN) or by

random draws with replacement from Ycc (simple random draw imputation, SR).

Inferences are based on standard methods for completely observed data sets, i.e.

imputed values are treated as if they were observed, thus ignoring the uncertainty

due to their prediction. The results in Table 1 illustrate the points discussed

above. Since the missing values are MCAR, the means of the estimates θ̂ are

close to the true values, regardless of the imputation strategy. The crucial point

is that both single imputation strategies (MEAN and SR) grossly underestimate

the variances of the estimators, leading to anti-conservative inferences, i.e. the

null hypothesis is rejected too often. In the simple case considered here, the

estimated variance of the estimator of the mean could of course be easily corrected

to account for this additional variation, but in most real-life situations a correction

term for the variance estimator is not available. However, these results show that

when applying standard methods, the MEAN and SR strategy fail in providing

valid inferences even in a straightforward estimation situation under the relaxed

MCAR condition.

(21) To account for these problems and at the same time keep the analyses of

incompletely observed data sets simple, Rubin (1987) developed the so called

multiple imputation method, where each missing value is replaced by D > 1, in

some sense ‘proper’ values or predictions (Rubin, 1987). One major characteristic

of multiple imputations being proper is that all the uncertainty in the predictions

16



Table 1: Mean (m), estimated standard errors (SDE), standard deviation (SD), pro-

portion of rejection of the null H0 : θ = 2 (α = 0.05) over 20 000 simulations.

COM MEAN SR SR-MI ABB

m 2.00 2.00 2.00 2.00 2.00

SDE 0.200 0.167 0.199 0.228 0.239

SD 0.200 0.237 0.260 0.238 0.239

rej 0.05 0.17 0.14 0.06 0.05

is reflected in their variation. Going back to the simulation study, each observed

value can be decomposed in the ‘true’ mean and a random error. However, neither

the ‘true’ mean nor the error is observable. Thus, to generate imputations, both

need to be estimated. For drawing valid inferences from a completed data set, one

has to account for the randomness in both estimators. In terms of the multiple

imputation approach this is easily done by imputing D combined predictions of

the mean and the error, and thus generating D completed data sets, that can

in turn be analysed with standard methods for completely observed data sets.

Finally, the resulting D estimators are combined according to simple rules given

by Rubin (1987) or Little und Rubin (2002).

(22) In the simulation study, a first multiple imputation strategy was to repeat

simple random draw imputation. This is equivalent to fixing θ̂ at the sample

mean and repeatedly draw from the residual distribution with variance fixed at
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its sample value (SR-MI). Note that this strategy ignores the uncertainty inherent

in the estimated mean and variance. According to the second strategy (ABB),

we first drew a naive bootstrap sample from the observed part of the sample and

then, for each missing value, randomly drew a value (with replacement) from

this bootstrap sample. This is equivalent to calculating the sample mean for

the bootstrap sample and then draw values for the error terms. Thus, repeated

application of this procedure leads to multiple imputations that in addition to the

uncertainty in the predictions given the mean of the observed part of the sample,

also reflect the uncertainty inherent in the sample mean itself. Rubin (1987)

introduced this imputation strategy as ‘Approximative Bayesian Bootstrap’. For

both multiple imputation strategies, we generated D = 20 imputations for each

missing value. Table 1 shows that in contrast to the estimator based on the ABB

strategy, the estimator based on the SR-MI approach slightly underestimates the

variance of the estimators.

(23) Thus, following usual practice to analyse singly imputed data sets as if the

imputations were ‘recovered’ true values and treating them as being observed

can be seriously misleading. Unfortunately, this strategy is reinforced by data

suppliers that release singly imputed data sets without giving information on how

to draw proper inferences or even flagging the imputations.
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4 Conclusions

(24) In this paper we examined the concept of ‘accuracy’ applied to data sets as

provided, e.g., by official statistical agencies. We argue that since the ultimate

goal usually is to draw valid inferences about a population and not about the

data set itself, the term ‘accuracy’ should not refer to a single data set, but rather

should be some kind of ‘process accuracy’. According to this view, a survey can be

said to be accurate (with respect to θ̂) if the preceding data production processes

keep the assumptions associated with θ̂. This implies that a data set can be

accurate with respect to one analysis but inaccurate with respect to another.

These points were discussed for the imputation process as a sub-process of data

production, where missing values are replaced by somehow ‘plausible’ values. We

argued that, for example, the ‘hit-rate’ criterion is misleading in assessing the

accuracy of a single data set: If the unobserved values can be ‘recovered’ by some

known deterministic function, then such a measure is unnecessary. Otherwise,

the imputations are uncertain predictions and this uncertainty has to be taken

into account. Ignoring this uncertainty leads to seriously biased inferences as

illustrated in section 3. This point is particularly relevant if a potential user

is not aware of the imputation process and thus is unable to account for the

uncertainty in the subsequent inferences.

(25) It should be noted, that although we only consider the imputation step,

the same principal arguments apply to the entire survey process. For example,
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in a design-based context, a sample should be a probability sample (cf. Särndal

et al., 1992), otherwise it is hard to justify inferences based on, e.g., the Horvitz-

Thompson estimator. This particularly holds for the so called error-localisation

problem, where for a set of values violating some editing rules, a decision has to

be made which combination of values is erroneous and which values have to be

set to missing for subsequent imputation. To illustrate this problem, consider

a data set consisting of the two variables age and marital status. Observing

a 14 year old widow may violate a predefined editing rule that says if age is

lower than sixteen the martial status must show “single”. The question arises,

which of the observed values is erroneous and needs to be corrected: age, martial

status or both. In principle there are 2i− 1 possible combinations, where i is the

number of variables involved in the violated editing rule. Considering a variety of

editing rules that are additionally related by shared variables (like age regularly

approaches in a multitude of editing rules) makes the problem of deciding for one

combination profoundly complex. A comprehensive description of the problem in

terms of propositional logic and an approach for linking it with the subsequent

imputation process is given by Fellegi und Holt (1976). Since the underlying

problem can be shown to be NP-complete, there are only approximate solutions

available (for a promising branch-and-bound algorithm see de Waal und Quere,

2003). However, regardless of whether the decision which values are set to missing

is done by more or less complex deterministic decision algorithms or clerical staff

(which makes it incomprehensible for statistical approaches), the basic drawback
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remains untreated: Since a “true” solution of the error-localisation problem is

unavailable, in any case and for any approach, the price to be paid for a decision

is additional uncertainty entering the survey process, which needs to be revealed

for and included in inferences based on the suitably edited data set.
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