
Bitzer, Jürgen; Schröder, Philipp J. H.

Working Paper

Bug-fixing and code-writing : the private provision of open
source software

DIW Discussion Papers, No. 296

Provided in Cooperation with:
German Institute for Economic Research (DIW Berlin)

Suggested Citation: Bitzer, Jürgen; Schröder, Philipp J. H. (2002) : Bug-fixing and code-writing : the
private provision of open source software, DIW Discussion Papers, No. 296, Deutsches Institut für
Wirtschaftsforschung (DIW), Berlin

This Version is available at:
https://hdl.handle.net/10419/18280

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/18280
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Discussion Papers
Jürgen Bitzer
Philipp J. H. Schröder

Bug-Fixing and Code-Writing:
The Private Provision of Open
Source Software

Berlin, September 2002



Opinions expressed in this paper are those of the author and do not necessarily
reflect views of the Institute.

DIW Berlin

German Institute
for Economic Research

Königin-Luise-Str. 5
14195 Berlin, 
Germany

Phone +49-30-897 89-0
Fax      +49-30-897 89-200

www.diw.de

ISSN 1619-4535



Bug-Fixing and Code-Writing:
The Private Provision of Open Source Software

Jürgen Bitzer and Philipp J.H. Schröder∗

July 2002

Abstract

Open source software (OSS) is a public good. A self-interested
individual would consider providing such software, if the benefits he
gained from having it justified the cost of programming. Neverthe-
less each agent is tempted to free ride and wait for others to develop
the software instead. This problem is modelled as a war of attri-
tion with complete information, job signaling, repeated contribution
to the public good and uncertainty in programming. The resulting
game does not feature any delay: software will be provided swiftly, by
young, low-cost individuals who gain considerably by signaling their
programming skills; the startup (and collapse) of an OSS project dis-
plays bandwagon dynamics.

Keywords: open source software, war of attrition, public goods.
JEL classification: H41, L86, L31

∗DIW Berlin – German Institute for Economic Research. Corresponding author:
Philipp J.H. Schröder, DIW Berlin, Königin-Luise-Str. 5, 14195 Berlin, Germany, Tel.:+
49 30 89789692, Fax:+49 30 89789108, email: pschroeder@diw.de.

1



1 Introduction

Open Source Software (OSS) is a public good supplied by voluntary private

contributions. The term OSS refers to the fact that everyone can access

and alter the program source code; it is a public good, because under the

common GNU GPL license, any additions made by one programmer/user

must be made available at no cost to all other programmers/users. Contrary

to what one might expect, there are no signs of under-provision or delays

in supply.1 Several OSS projects even capture market shares from their

commercial competitors and have a reputation for innovation and reliability.

Popular examples are Linux, which is currently estimated to run on some

18 million computers (Linux Counter (2002)), and the Apache Web Server,

which is installed on 58% (i.e. 22 million units) of reachable web servers

(Netcraft (2002)). These achievements are even more astounding, if one

takes into account the fact that millions of lines of codes have been written

and thousands of software bugs have been fixed for each large OSS project,

all by individual volunteer programmers. These programmers only associate

with each other through informal communities, internet news groups and the

common interest in OSS. They dedicate their time and effort free of charge,

even though they are not able to exclude others from the benefits of their

work.

This paper addresses the OSS phenomenon as a game of the private pro-

vision of a public good (see also Johnson, 2001). Following on from the work

of Bliss and Nalebuff (1984), Hendricks et al. (1988) and Bilodeau and Slivin-

ski (1996), the paper starts by developing a simple war of attrition setting,

which builds on existing results and assumptions, whilst reflecting OSS pecu-

liarities. For example, information on the status of projects and the abilities

(programming techniques) of other programmers is freely available within

1For an introduction to the history and success of OSS see for example Stallmann

(1999), Rosenberg (2000), Feller and Fitzgerald (2002) or Hars and Ou (2002).

2



the community of OSS programmers, as the source code is open and various

OSS internet newsgroups exist (See DeBona et al. (1999)), hence we solve

the game assuming complete information. Furthermore we extend the exist-

ing literature on the private provision of public goods by explicitly modelling

some additional OSS specific characteristics. First, signaling: the providers

of the public good receive an additional payoff, on top of the utility from

the public good, from being able to signal their programming abilities. This

signal creates value both through improving prospects on the job market,

Lerner and Tirole (2000) and Raymond (2000b), and enhancing reputations

within the community of programmers (see Raymond (2000a) and Diamond

and Torvalds (2001)); this signal only continues for a limited period of time

after the contribution takes place. Such signals are institutionalised in OSS

activity: the OSS license obliges its programmers/users to document all pro-

gramme changes made (including naming the author of the changes) in the

software itself. Second, the simple private-provision-of-a-public-good model

– where the OSS is a one-off discrete unit of a public good – is extended

to incorporate modular software programming; agents improve the available

OSS by creating complementary software modules, thus making repeated

contributions to the public good. This extension means that the certainty

assumption in the model has to be adapted; this acknowledges the fact that

the success of any programming effort is uncertain. The individual agents do

not know a priori how many modules will actually be created at any moment

in time, but they do know how many agents are expending effort on develop-

ing additional modules, and that the value of a new module increases with

the number of other software modules developed for the same OSS project.2

2More precisely, the model assumes that the functionality and applicability of any

software module depends on how many other modules are developed. For example the

improvement of an operating system developed by one agent increases the value of a newly

programmed driver by another agent, and vice versa.

3



The paper derives the following results from the formal model. In a stan-

dard war-of-attrition game, where open source software is a one-off discrete

unit of public good to be developed, the software will be provided without

delay. The actual individual who provides the unit can be identified. Ceteris

paribus this individual receives a greater benefit from using the OSS, gains

more from being able to signal his programming ability, has a longer time

horizon (i.e. a younger individual), is more patient, and faces lower costs for

software development. If the software development examined is modular in

nature, i.e. if agents repeatedly contribute to the public good, the war-of-

attrition feature of the game collapses. Instead, agents have to decide when

to join and exit the programmer community. Once again, software will be

provided sooner rather than later. Individuals are more likely to join the

programmer community (and will start to free ride at a later point in time),

when they receive a greater benefit from the OSS, have a longer time horizon,

are more patient, have lower costs when developing software, when there is a

higher success rate in programming activity, when there is more complemen-

tarity between software modules, and when the community of programmers

is larger. A larger benefit from signaling – even though it initially attracts

agents to join a OSS community – also induces agents to start to free ride at

an earlier stage, i.e. agents aim to harvest the (now larger) value of the sig-

nal. More importantly, the model establishes that the start up (and collapse)

of an OSS community of programmers displays bandwagon dynamics.3

The remainder of the paper is as follows. The following section introduces

the model and presents the assumptions used for the basic OSS phenomenon

that result in a war-of-attrition setup; it only deals with equilibria where

software development (the public good) is treated as a single discrete unit.

In section 3, the game is extended to deal with software development of

3The addition of one agent to the community of programmers immediately increases

the probability of other non-members joining.

4



a modular nature, i.e. individuals can repeatedly contribute to the public

good. Section 4 concludes the paper.

2 The Model

Consider a population of N individuals. Each individual j has the ability to

develop one discrete unit of OSS. Once developed it exists forever, is identical

for all individuals, and its consumption is characterised by non-rivalry and

non-excludability. Time is continuous and individuals discount the future at

the rate rj. Utility flows are as follows. Without the OSS, individuals have

to use a commercial closed source software alternative and receive the utility

flow vj. From the time when the OSS is introduced, all individuals receive

the flow utility uj = vj + zj, where zj (zj ≥ 0 ∀ j = 1, ..., N) is the flow

value from the OSS being available. Individuals can produce the software at

cost Cj, which will be specified below. Cj is the present discounted value of

the net costs to the individual j who develops the OSS, i.e. it is the actual

development cost minus any gains from the signaling of programming ability

and the improved reputation within the community of programmers. Given

these specifications we can state:

Lemma 1. No individual in group m, defined by Cj ≥ zj

rj
for all j = 1, ...,m,

would ever develop the OSS. The community of potential developers consists

of n = N −m individuals i, for which Ci < zi

ri
for all i = 1, ..., n.

In other words, lemma 1 states that those individuals who face lower costs

when developing software, or who benefit more from the OSS, are potential

developers of the software.

Assumption 1. Within the community n, all costs and benefits are common

knowledge.

5



If a simultaneous one-time choice is modelled using the strategy set

{develop, do not develop}, then this game becomes a static game of chicken,

where the winning agents are able to free ride and receive the payoff ui

ri
, and

the losing agent develops the software and receives the payoff ui

ri
− Ci. If no

one develops the OSS, the payoff for all is vi

ri
. As usual, this type of game

features a host of pure and mixed strategy Nash equilibria, in which anyone

might be the actual developer of the software. Hence one cannot deduce who

will actually develop the OSS.

By allowing individuals the option of postponing their decision, such that

they can wait and see if someone else will develop the software instead, some

dynamics can be added to the game. The length of time a member of the

community n is willing to wait naturally depends on the benefit he would

gain if the OSS were to exist, the costs of developing the software himself,

and his time preference. In the normal form version of this game, a pure

strategy is a time tiε[0,∞), when i will develop the software if no one else

has already done so.

The following payoffs can be stated. If the OSS is developed by individual

j 6= i at time t, i’s payoff is:

Fi(t) =
vi

ri

(
1− e−rit

)
+

ui

ri

e−rit (1)

The net cost of developing the software consists of a one-off develop-

ment cost ci, and a net utility flow si incurred for ∆ periods. The term

si denotes the gain from being able to signal programming skills, i.e. the

signaling value, which could either accrue in a job market/wage negotiation

setting (Lerner and Tirole (2000)) or from the improved reputation and so-

cial standing within the community (Torvalds and Diamond (2001)). The

total net cost for agent i of voluntarily developing the software at time t is:

Ci(t) = cie
−rit − si

ri

(
e−rit − e−ri(t+∆)

)
(2)

6



Assuming that ∆ extends to infinity, then by lemma 1 we know that

ui + si − rici > vi. Thus every individual in the community n would develop

the OSS in period 0 rather than to live without it for ever. Now, if individual

i develops the software at time t his payoff is

Di(t) = Fi(t)− Ci(t) (3)

Finally, if no one ever develops the software, individual i receives the

payoff Ri = vi

ri
= limt→∞Fi(t) = limt→∞Di(t).

Lemma 2. Any individual i such that ci < si

ri
will develop the OSS voluntarily

and immediately at time t = 0.

Proof is given in the appendix. In plain speech, lemma 2 states that an

individual, who gains considerably from being able to signal programming

ability, simply develops the software, rather than waiting for someone else

to provide it.4 By lemma 2, the game ends at time t = 0. A more complex

game emerges under the following assumption.

Assumption 2. ci ≥ si

ri
for all i = 1, ..., n.

Through assumption 2 and lemma 1, we know Fi(t) > Di(t) > Ri for all t

and the game becomes a n player continuous time war of attrition (Hendricks

et al. (1988)).

Using the existing results in Hendricks et al. (1988) and Bilodeau and

Slivinski (1996), one can characterise the following equilibria for this type of

game. For every individual i, there is a subgame perfect equilibrium outcome

in which only i will develop the OSS immediately. If no one else but i develops

the OSS, then i’s best strategy is to develop the OSS immediately, and if i

develops the OSS immediately, it is everyone’s best strategy to wait. So

4Implicitly we assume that several agents can develop the software, but that only one

unit of software is created. However, all developing agents receive their signaling payoff.

7



the game still permits – as is usual for this type of game – many subgame

perfect equilibria in which anyone might volunteer. As shown in Bilodeau and

Slivinski (1996), the set of subgame perfect equilibria can be radically reduced

once time horizons become finite, regardless of how distant in the future the

time limit is. Using this assumption, it is now possible to characterise fully

the individual who will actually provide the public good.

Assumption 3. All individuals i = 1, ..., n have a finite time horizon, Ti.

That is, Ti marks the fact that i is a finitely lived agent, or shows the

point in time at which i moves to a different job (where he is unable to

devote any effort on open source programming), or is the point in time when

i’s human capital becomes outdated. The altered payoffs become:

Fi(t) =
vi

ri

(
1− e−rit

)
+

ui

ri

(
e−rit − e−riTi

)
(4)

Di(t) = Fi(t)− cie
−rit +

si

ri

(
e−rit − e−riTi

)
(5)

Ri =
vi

ri

(
1− e−riTi

)
(6)

The effect of a finite time horizon is that the game becomes non-

stationary. Thus from an agents perspective, there is a time t̄, where he

will no longer choose to become developer of OSS. Beyond that point in

time, even when the OSS is not provided, the dominant strategy is never to

develop, i.e. Di(t) < Ri;∀ t > t̄i. The critical time t̄ is defined by Di(t̄) = Ri.

Lemma 3. Individual i will not develop the OSS after time

t̄i = Ti −
1

ri

ln

(
zi + si

zi + si − rici

)
. (7)

Note that if assumption 2 is violated, then zi+si

zi+si−rici
< 1 and hence t̄i > Ti

holds, i.e. these individuals gain no utility from waiting. Also, if zi + si < rici

then time t̄ is not defined, which is in fact the condition of lemma 1, i.e.

8



individuals that are not members of the community n. Using lemma 3 it is

possible to state (Bilodeau and Slivinski, 1996):

Proposition 1. Given a finite time horizon for every individual in the com-

munity n and assuming that for all i, j ∈ {1, ..., n}, i 6= j : t̄i 6= t̄j , a unique

subgame perfect equilibrium exists, in which the individual with the highest t̄i

volunteers at time t = 0.

Proof is given in the appendix. The intuition for this proposition is

straightforward. If an individual knows that he is the most interested in

having the OSS, and if he knows that everyone else knows this as well, then

he might as well give in right away. The unique developing individual is

characterised by the highest t̄. Formally,

Proposition 2. Ceteris paribus an individual who

i) would gain more from the software, zi

ii) would gain more from signaling, si

iii) has a longer time horizon, Ti (younger)

iv) has a lower discount rate, ri (more patient)

and who

v) faces lower costs for software development, ci

is more likely to provide the OSS.

Proposition 2 follows on from proposition 1 and lemma 3. In particular,

result iv – the effect of a change in the discount rate – differs from the

results that Bilodeau and Slivinski (1996) derive using intuitive reasoning

and indeed differs from the conventional intuition behind the war of attrition,

where patience is a good strategy for winning. Formal proof of our result is

given in the appendix.

9



3 Modular Software: Repeated Contribution

to the OSS

In this section, the assumption that the OSS is a discrete unit of software

is relaxed. Instead it is assumed that the OSS is modular in structure, i.e.

the amount of the public good is determined by the number of contribut-

ing agents. Stock effects are eliminated by assuming that agents are only

interested in new and additional advances in software, thus normalising the

utility in a no-further-modules situation. It is assumed that commercial soft-

ware has a certain exogenously given and fixed growth rate, generating the

flow utility ∆vj. Similarly, the flow utility from progress and growth in the

OSS is denoted by Zj(∆l), where ∆l is the additional number of OSS mod-

ules developed at a certain point in time. Thus agent j’s utility becomes

uj = ∆vj + Zj(∆l) when software is modular in nature.

Programming effort in OSS bears some uncertainty of success. Thus it

is assumed that the occurrence of a new, functioning OSS module follows a

Poisson distribution with the arrival rate λ, where λ represents the common

programming ability in the community. So the probability that ∆l modules

are created at a certain point in time, if n agents are involved in program-

ming is (λn)∆l

∆l!
e−λn. A specification from the quality ladder model literature

(e.g. Aghion and Howitt (1992)) is borrowed to capture the fact that the

OSS’s applicability and functionality increase as the number of modules de-

veloped by other agents in parallel increases. In particular we postulate that

the utility flow from OSS is given by Zj(∆l) = zjγ
∆l, where γ > 1 measures

the resulting gain in applicability and functionality stemming from the com-

plementarity of software modules, and where zj ≥ 0 represents an agent’s

preference for OSS software over commercial software. The expected utility

flow from newly developed OSS software at any point in time is thus

10



E(Zj(∆l)) =
∞∑

∆l=0

(λn)∆l

∆l!
e−λnzjγ

∆l

= zj e(γ−1)λn (8)

The utility flow stemming from OSS depends on the number of other

agents participating; this creates strategic interaction among agents. How-

ever, this is no longer a war of attrition: it is no longer possible for an indi-

vidual to wait out his opponents. Rather, agents now have the dilemma of

when or whether to join and leave the community of programmers, whereby

their additional (withdrawn) effort increases (decreases) the probability of

new, functioning modules occurring. This problem can be addressed by ex-

amining the expected lifetime utility of an agent i, who is a member of the

community n. When all agents including i develop OSS modules throughout

their entire lifetime, this gives the payoff

Di =
∆vi + zie

(γ−1)λn − ci + si

ri

(
1− e−riTi

)
(9)

In an environment of continuous software development, the characteristics

of signaling have to change to reflect the fact that reputation and job signal

decay swiftly if not maintained. This could either be caused by dynamics

within the community, where only agents who actually make contributions

are part of the reputation culture, or on the job market, where, due to con-

tinuous technological progress, last season’s human capital has no value.

However at the moment in time when an agent leaves the community of pro-

grammers, he still retains his gain from signaling, without actually having to

programme. Furthermore, having stopped developing modules himself, the

agent continues to have access to the software developed by other agents, so

he still receives the full benefit from the OSS, but without the cost of having

to contribute himself. So the payoff for agent i, who starts to freeride at time

t, assuming that all other agents continue in the community becomes:

11



Fi(t) =
∆vi + zie

(γ−1)λn − ci + si

ri

(
1− e−rit

)
(10)

+
∆vi + zie

(γ−1)λ(n−1)

ri

(
e−rit − e−riTi

)
+ sie

−rit

Solving Fi(t̄) = Di defines the point in time (t̄) at which an individual

who is a member of the community – developing OSS software – will leave it

and start to free ride.

Lemma 4. Individual i will stop to contribute modules to the OSS at time

t̄i = Ti +
1

ri

ln

(
1 +

risi

zie(γ−1)λ(n−1) − zie(γ−1)λn + ci − si

)
. (11)

For freeriding to actually occur during an agent’s lifetime, the following

requirement has to be introduced.

Assumption 4. zie
(γ−1)λn − zie

(γ−1)λ(n−1) − ci + si > risi for all i = 1, ..., n.

Assumption 4 ensures that the logarithm in (11) produces a negative

number. For a very large ci the condition will be violated, implying that

such an individual is not a member of the community. Also, assumption 4

will eventually hold for a large enough n, implying that free riding will occur

in large communities.

Differentiating (11) with respect to the various parameters,5 we can char-

acterise free riding individuals.

Proposition 3. Ceteris paribus an individual will start to free ride later, i.e.

t̄ will be higher, when he

i) gains more from the open source software, zi

ii) has a longer time horizon, Ti (younger)

iii) has a lower discount rate, ri (more patient)

5The precise expressions of the derivatives are provided in a separate appendix available

from the authors upon request.

12



iv) faces lower costs for software development, ci

v) is part of a community with a higher arrival rate, λ

vi) takes part in a project with larger complementarity among modules, γ

vii) is part of a larger community, n

and

viii) has a lower signaling value, si.

Proof that ∂t̄i
∂ri

< 0 and ∂t̄i
∂si

< 0 is given in the appendix. A larger signaling

value – proposition 3 viii – can induce free riding, because when the agent

leaves the community, he harvests a one-off gain by maintaining the signaling

value while not facing the costs of programming. As this gain increases, the

free riding payoff also increases and the agent will thus exit the community

sooner. Furthermore an important result on the dynamics of the community

emerges from proposition 3 item vii.

Corollary 1. The exit of any agent i from the community n makes all other

n− 1 agents revise their stopping time downwards.

Thus, the collapse of an OSS project displays bandwagon dynamics. The

exit of one agent increases the probability that in the next instant another

agent will exit.

To examine the start-up of an OSS project, the incentives to join a pro-

grammer community have to be examined using the same principles. The

payoff for an agent j who never develops any OSS modules himself, and when

a community of n programmers exists, is

Fj =
∆vj + zje

(γ−1)λn

rj

(
1− e−rjTj

)
(12)

If such an individual joins the community at time t and starts to de-

velop modules himself, whose signaling value only occurs after the agent has

actually started this activity, the payoff becomes

13



Dj(t) =
∆vj + zje

(γ−1)λn

rj

(
1− e−rjt

)
(13)

+
∆vj + zje

(γ−1)λ(n+1) − cj + sj

rj

(
e−rjt − e−rjTj

)
− sje

−rjt

Then solving Dj(t) = Fj defines the time up to which an agent would

still want to join the community.

Lemma 5. Individual j will not join the OSS community n after time

tj = Tj +
1

rj

ln

(
1 +

rjsj

zje(γ−1)λn − zje(γ−1)λ(n+1) + cj − sj

)
. (14)

Of course, time tj is only slightly less than the stopping time derived in

(11), implying that after joining, an agent will continue at least a certain

period of time before starting to free ride. Furthermore, since
∂Dj(t)

∂t
< 0 we

can state:

Lemma 6. Any agent j who joins an existing OSS programming community

during his lifetime will do so as early as possible.

Finally, because (11) and (14) have identical structures, the qualities laid

out in proposition 3 are also possessed by those agents, who would still find

it beneficial to join the programming community at a later point in time. It

is important to note that the conditions in lemma 5 and lemma 6 might not

be fulfilled in small communities, i.e. for low n. The time up until which an

agent would consider joining the community might become negative for low

n, implying that the agent would never become a member.

It then remains to be shown which characteristics an agent, who would

actually start a OSS project from scratch, has. This type of individual fulfills

tj|n=0 > 0. Plugging n = 0 into (14) and solving for the cost of programming

gives:

14



Proposition 4. (Starting module) An agent j with a programming cost cj

such that cj < sj − zj + zje
(γ−1)λ − rjsj

1−e−rjTj
would develop an OSS starting

module.

The requirements for this proposition are in fact more restrictive than

those in assumption 4. From proposition 4, it follows that younger agents

(higher Tj), agents who have a lower discount rate, rj, who gain more from

signaling their programming skills, sj, and who have a larger preference for

OSS, zj are more likely to start up an OSS project.

Finally, since
∂tj
∂n

> 0 one can complement corollary 1:

Corollary 2. The addition of an agent j to the community n makes all other

non-member agents revise their latest joining time upwards.

Thus, the startup of an OSS project displays bandwagon dynamics as

well. A new member entering a community increases the probability that in

the next instant another agent will join.

4 Conclusion

Even though OSS is a public good, it evolves at a rapid pace, developed for

free by highly qualified, young and motivated individuals. The paper argues

that once the OSS phenomenon is understood as the private provision of a

public good, these features emerge quite naturally. This paper applies the

standard war-of-attrition model of the private provision of public goods, due

to Bliss and Nalebuff (1984) and Bilodeau and Slivinski (1996), to the OSS

phenomenon. In order to capture OSS characteristics, we include the need for

a particular software solution (Torvalds and Diamond (2001) and Raymond

(2000a)) and the value of boosting one’s reputation and job signaling (Ray-

mond (2000b) and Lerner and Tirole (2000)) into the model. Further, driven

by the observation that information within the community of programmers

15



is close to costless, the model is solved under the assumption of complete

information. Assuming that only one unit of open source software is to be

developed, the software is provided sooner rather than later; the individual

who will actually provide the OSS ceteris paribus gains more from using the

software, from being able to signal programming skills, is a younger individ-

ual (i.e. longer time horizon), is more patient (i.e. lower discount rate) and

faces lower development costs. Thus, this model already yields results that

compare well with accounts of the OSS phenomenon.

Nevertheless, important features of the OSS development process and im-

portant criteria, which influence the agents’ decision to join the programmer

community, are neglected in the basic model. Therefore the model is fur-

ther extended to include modular programming; a key feature of the OSS

development process. This means that agents can repeatedly contribute to

the public good and that they make their decision under uncertainty on how

many OSS modules will be developed by other agents. Thereafter, an agent’s

expected benefits and the resulting decision on whether to join or leave the

programming community both depend on the number of other agents de-

veloping OSS modules, the complementarity effects between the single OSS

modules, the programming ability within the community of programmers

and the signaling value. The latter, in contrast to the basic model, now no

longer lasts for the whole life of an agent, but decays swiftly following the

exit of the agent from the community.

In addition to the results of the basic model we can, with these extensions,

show that individuals are more likely to join the programming community

(and start to free ride later), when the programming abilities in the com-

munity are better, when the complementarity between the single modules is

higher and when the number of other programmers developing OSS modules

is larger. In contrast to the basic model, the signaling value not only initially

attracts agents to join the OSS community, but also induces agents to start

16



to free ride earlier, because the agents aim to harvest the benefits from the

signal. Due to the impact of community size on the agents decisions, the

start up (and collapse) of an OSS project displays bandwagon dynamics.

17



A Appendix

A.1 Proof of lemma 2

Proof. The condition si

ri
> ci implies Di(t) > Fi(t) for all t. Since Di(t) is

monotone and falling in t, Di(0) maximises utility.

A.2 Proof of proposition 1

Proof. 6 Relabelling individuals, the different t̄i’s can be ordered t̄n > t̄n−1 >

... > t̄1. When the software has yet to be provided at time t ∈ (t̄n−1, t̄n]

agent n knows that no one else will ever develop the OSS. Since Dn(t) >

Rn(Tn)∀tε(0, t̄n) and hence also for all t ∈ (t̄n−1, t̄n), agent n’s subgame

perfect strategy is to develop the OSS, if any time tε(t̄n−1, t̄n) is reached.

Similarly at any time t ∈ (t̄n−2, t̄n−1], agent n and n− 1 are the last feasible

candidates who could provide the software. But there is a time t̃ < t̄n−1

and sufficiently close to t̄n−1, such that Fn−1(t̄n−1) > Dn−1(t̃), and hence

n − 1, and everyone else, will prefer to wait for n to volunteer at time t̄n−1.

Hence, in any subgame perfect equilibrium, n will volunteer at some time

t ∈ (t̃, t̄n]. By backwards induction, the unique subgame perfect equilibrium

has n developing the OSS at t = 0.

A.3 Proof that ∂t̄i
∂ri

< 0 when software is a single unit

Proof. From (7) we derive

∂t̄i
∂ri

=
−ci

ri(zi + si − rici)
+

ln
(

zi+si

zi+si−rici

)
r2
i

(A.1)

which, given lemma 1 and assumption 2, consists of a negative and a positive

term. Following proposition 2, we have to show that ∂t̄i
∂ri

< 0. In manipulating

6This proof follows Bilodeau and Slivinski (1996).

18



(A.1), one can restate

ln

(
zi + si

zi + si − rici

)
<

zi + si

zi + si − rici

− 1 (A.2)

Which is always true since a− ln(a) > 1 ∀ a > 0; a 6= 1.

A.4 Proof that ∂t̄i
∂ri

< 0 when software is modular

Proof. From (11) we derive

∂t̄i
∂ri

=
−b

a− b
ln

(
1 +

−b

a

)
(A.3)

where a = −ci + si − zie
(γ−1)λ(n−1) + zie

(γ−1)λn and b = risi, and a > b > 0

holds due to assumption 4. Following proposition 3, it has to be shown that

∂t̄i
∂ri

< 0. Rearranging (A.3) yields:

1− a

a− b
< ln

(
a− b

a

)
Finally, defining x = a

a−b
> 1 this requirement can be restated as

0 < ln

(
1

x

)
+ x− 1 (A.4)

Define the function

g(x) = ln

(
1

x

)
+ x− 1

= x− ln(x)− 1

Note that g(1) = 0 and g′(x) > 0 ∀ x > 1. Condition (A.4) is therefore

true for the relevant parameter range.

19



A.5 Proof that ∂t̄i
∂si

< 0 when software is modular

Proof. From (11) we derive

∂t̄i
∂si

=
1

ci + a + risi − si + si

(
(−1) + (ri−1)si

−ci−a

) (A.5)

where a = zie
(γ−1)λ(n−1) − zie

(γ−1)λn < 0; ∂t̄i
∂si

is negative for:

ci + a + risi − si + si

(
(−1) +

(ri − 1)si

−ci − a

)
< 0 (A.6)

Solving A.6 for ci leads to:

si − a > ci (A.7)

Inequality A.7 holds due to assumption 4. Thus, ∂t̄i
∂si

< 0.

20



References

Aghion, P. and P. Howitt (1992), A Model of Growth Through Creative

Destruction, Econometrica, Vol. 60, No. 2 (March), pp. 323-351.

Bilodeau M. and A. Slivinski (1996), Toilet cleaning and department chairing:

Volunteering a public service, Journal of Public Economics, Vol. 59, pp. 299-

308.

Bliss, C. and B. Nalebuff (1984), Dragon-slaying and ballroom dancing: The

private supply of a public good, Journal of Public Economics, Vol. 25, pp.

1-12.

DiBona, C., Ockman, S. and M. Stone (eds.)(1999), Open Sources: Voices

from the Open Source Revolution, O’Reilly: Sebastopol, CA.

Feller, J. and B. Fitzgerald (2002): Understanding Open Source Software

Development, Amsterdam: Addison Wesley Longman.

Hars, A. and S. Ou (2002), Working for Free? Motivations for Participating

in Open-Source Projects, International Journal of Electronic Commerce, Vol.

6 (3), pp. 25-39.

Hendricks, K., A. Weiss and C. Wilson (1988), The war of attrition in contin-

uous time with complete information, International Economic Review, Vol.

29, pp. 663-680.

Johnson, J. P. (2001), Economics of Open Software, Working Paper (Based

on authors Ph.D. Thesis, MIT), May 17, 2001.

Lerner, J. and J. Tirole (2000), The Simple Economics of Open Source,

NBER Working Paper, No. 7600, Cambridge. (Forthcoming: Journal of

Industrial Economics, 2002).

21



Linux Counter (2002): Online Information at [http://counter.li.org], down-

loaded 11.04.2002.

Netcraft (2002): Online Information at [www.netcraft.com], downloaded

19.03.2002.

Raymond, E. S. (2000a): Homesteading the Noosphere, Revision 1.22,

2000/08/24, first version 1998.

Raymond, E. S. (2000b): The Cathedral and the Bazaar, Revision 1.51,

2000/08/24, first version 1997.

Rosenberg, D. K. (2000): Open Source: The Unauthorized White Papers,

B&T; IDG Books Worldwide.

Stallman, R. (1999), The GNU Operating System and the Free Software

Movement, in: Open Sources: Voices from the Open Source Revolution, Chris

DiBona, Sam Ockman, and Mark Stone (eds.), O’Reilly: Sebastopol, CA.

Torvalds, L. and D. Diamond (2001), Just for Fun: The Story of an Acci-

dental Revolutionary, HarperBusiness.

22


