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Equations Approach for the Estimation of

Structural Equation Models
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Abstract

The results of two simulation studies suggest a mixed `generalized

estimating/pseudo-score equations' approach to lead to more eÆcient es-

timators than a GEE approach proposed by Qu, Williams, Beck and

Medendorp (1992) or a three-stage approach as proposed e.g. by Schep-

ers, Arminger and K�usters (1991) in panel probit models with binary re-

sponses. Furthermore, the mixed approach led to very eÆcient estimators

of regression and correlation structure parameter estimators in an assumed

underlying model relative to the ML estimator for an equicorrelation struc-

ture. Using the mixed approach, the regression parameters are estimated

using generalized estimating equations and the correlation structure pa-

rameters are simultaneously estimated using pseudo-score equations. Both

sets of parameters are calculated as if they were orthogonal, thereby pre-

serving the robustness of the regression parameter estimators with respect

to misspeci�cation of the correlation matrix. Based on the above simu-

lation results, the mixed approach is extended for the estimation of more

general structural equation models with ordered categorical or mixed con-

tinuous/ordered categorical responses.

Key words: Multivariate probit model; generalized estimating equations;

pseudo-score equations; correlated categorical and continuous responses; struc-

tural equation models

aGerman Institute for Economic Research (GSOEP), K�onigin{Luise{Str. 5, D{14195 Berlin,

Germany

1



1 Introduction

Maximum likelihood (ML) estimation of multivariate probit models with binary

and/or ordinal responses is hampered by the computational intractability of

multidimensional integrals. Therefore, in the last 15 years a lot of work has

been devoted to deriving non-ML approaches for the estimation of these models.

Today there are several non-ML approaches available which allow or could easily

be extended to estimate multivariate probit models with binary and/or ordered

categorical responses. However, a desirable property of estimators is a mean

squared error which is as small as possible, not only asymptotically but also in

�nite samples. Since only a few simulation studies comparing the di�erent ap-

proaches are available, not much is known about the di�erence of the various

non-ML estimators with respect to their bias and relative eÆciency in �nite sam-

ples. The estimation of mean and covariance structure probit models, although

more complex, is based on the same estimation methods as for the estimation of

multivariate probit models. Therefore, it is desirable to develop approaches that

yield estimators which are | in the above sense | optimal for the estimation of

the simpler models.

Estimation of structural equation models or mean and covariance structure

models with continuous and/or categorical responses generally is done in several

steps. For example, Muth�en (1984) proposed a three-stage procedure for the

estimation of structural equation models (see also Muth�en and Satorra, 1995).

A three-stage approach is also proposed by K�usters (1987) (see also Schepers,

Arminger and K�usters, 1991) for the estimation of slightly more general mean

and covariance structure models. A three-stage estimation procedure for the

estimation of structural equation models is also used by Lee, Poon and Bentler

(1990). In another paper by Lee, Poon and Bentler (1992) they propose a two-

stage approach for the estimation of their models (see also Lee, Poon and Bentler,

1995). However, their models are not as general as the models considered by

Muth�en (1984) or K�usters (1987) (cf. Lee, Poon and Bentler, 1992, p. 91).

Instead of starting with the development of estimation approaches of very gen-

eral and complex models, however, a �rst step in the development of an optimal

estimation approach could be to compare di�erent available approaches in simpler

multivariate models via simulated data sets, where all assumptions are controlled
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for and model speci�cations can systematically be variied. Then, learning from

the results of those studies new estimation approaches may be developed using

the most promising estimation methods.

In this paper, results from simulation studies are presented where di�erent

estimation approaches are compared with each other in the case of binary probit

models with correlated responses. Furthermore, a mixed generalized estimat-

ing/pseudo-score equations approach is proposed and compared to an existing

approach proposed by Qu, Williams, Beck and Medendorp (1992) and Qu, Pied-

monte and Williams (1994) in a second simulation study for the simple binary

panel model. Since the results of the simulation studies suggest that the mixed

approach is a very promising candidate for the estimation of more general struc-

tural equation models with ordered categorical or mixed continuous/ordered cat-

egorical responses, an extension of the mixed approach to the estimation of the

more general structural equation models is outlined.

2 Model and Notation

The general model is based on the assumption of a hierarchical latent model with

H + 1 levels (e.g. K�usters, 1987; Schepers, Arminger and K�usters, 1991). For

simplicity, however, only two hierarchical levels will be considered. Omitting the

index i, where i = 1; : : : ; n and n is the number of clusters (e.g. subjects), the

latent model is given by

B1�0 = �1 + �1�1 + �1x1 + �1 (�rst level)

and

B2�1 = �2 + �2�2 + �2x2 + �2 (second level),

or, given the necessary inverse matrices exist, more compactly by

�0 = B�1
1 (�1 + �1B

�1
2 (�2 + �2�2 + �2x2 + �2) + �1x1 + �1) (1)

and the assumption that the random vector �3 = (�01; �
0

2; �
0

2)
0 is | independently

of the exogenous vector variables x1 and x2 | normally distributed with expected

value zero and block diagonal covariance matrix 
(#), which is a function of a

structural parameter vector #. The matrices on the diagonal of 
(#) are the
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covariance matrices of the random vector variables �1, �2 and �2 respectively.

The non-singular matrices B1 and B2 represent, for example, relations between

the components of the latent vector variables �0 and �1. The matrices �1 and

�2 consist of regression parameters, �1 and �2 may be considered, for example,

as matrices of factor loadings and the vectors �1 and �2 are the general means

of the latent variables �0 and �1. In general, the elements of these matrices are

either �xed variables or elements of the structural parameter #.

De�ning the matrices F1 = B�1
1 , G1 =

�
I �1

�
,

F2 =

0
@ I 0

0 B�1
2

1
A ; G2 =

0
@ I 0 0

0 I �2

1
A ; K2 =

0
@ �1 0

0 �2

1
A ;

where I is the identity matrix and 0 denotes matrices with all elements equal to

zero, and


(#) = F1G1F2

0
@ �1

�2

1
A ; �(#) = F1G1F2K2;

v = F1G1F2G2

0
BBB@

�1

�2

�2

1
CCCA ; y? = �0;

the reduced form of the general model (1) may written as

y? = 
(#) + �(#)x + v; (2)

where v is normally distributed with expected value zero and covariance ma-

trix �(#) = (F1G1F2G2)
(#) (F1G1F2G2)
0, y? = (y?1; : : : ; y

?
t )

0 is a (t � 1)-latent

response variable (j = 1; : : : ; t) and x = (x01; x
0

2)
0.

Depending on the measurement level, each observable response yj is connected

with the latent, not observable response y?j by a corresponding measurement

relation. For example, if yj is metric, then yj = y?j . If yj is ordered categorical

with q = 1; : : : ; k + 1 categories and k unknown thresholds �j;1; : : : ; �j;k, then

yj = q , �j;q�1 < y?j � �j;q where �j;0 = �1 and �j;k+1 = +1.

Many special cases of the general model with H+1 levels are given in K�usters

(1987).
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The binary panel model as a special case The binary panel probit model

can be considered as a special case of the general model with only one level. To

see this, let B1 be the identity matrix and �1 be a matrix whose elements are all

equal to zero. Then (1) can be written as

�0 = �1 + �1x1 + �1

and the reduced form is given by

y? = �+ �x+ �;

where � � �1, � � �1, x � x1, � � �1 and � � N(0;�(#)). Note that �(#) =


(#).

However, if all regression parameters and all general means are assumed to

be equal over the observation points within each cluster, then the di�erent pa-

rameters can be collected in a (p+1)�1 parameter vector �. If, for each cluster,

all exogenous variables and a vector of ones are arranged according to the scalar

parameters in � in a (t� (p+ 1))-matrix X, the reduced form can be written in

a more familiar way as

y? = X� + �:

Since the observed responses are binary, the measurement relation

yj =

8<
:

1 if y?j > � ,

0 otherwise

is assumed, where � is an unknown threshold parameter. However, since not all

parameters are identi�able in this model, � is set to zero and the variances are

restricted to one.

3 Estimation approaches

3.1 Part I: Estimation of regression parameters

Using the binary panel model, in a �rst step, two estimation approaches are

compared with each other and for the special case of an equicorrelation structure

with the maximum likelihood (ML) approach. The approaches are compared

using simulated data sets with respect to convergence behavior of the estimates
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as well as bias and eÆciency of the estimators in �nite samples. Furthermore, in

this �rst step estimation of the regression parameters is the main interest.

The MECOSA approach (`mean and covariance structure analysis'; K�usters,

1987; Schepers, 1991; Schepers, Arminger and K�usters, 1991) is a three-stage

approach for the estimation of general mean and covariance structure models.

To estimate the binary panel model, at the �rst stage, regression parameter

estimates are calculated separately for every observation point j using the ML

principle, that is, t independent binary probit models are estimated. In the

second step, all correlations of the underlying errors are estimated using the t

regression parameter estimates from the �rst stage. This is done by maximizing

all possible t � (t � 1)=2 di�erent conditional marginal bivariate log-likelihood

functions. Then a consistent estimate of the asymptotic covariance matrix of

all parameter estimators of the �rst two stages is calculated. Note, that if the

mean structure parameters are of dimension p + 1, then this covariance matrix

has t�(p+1)+t�(t�1)=2 rows and columns, which can be a fairly large matrix.

For example, if just three regression parameters and one general mean have to

be estimated for t = 4, then the covariance matrix is a (22� 22) matrix. In the

third step, the structural parameters are estimated using a weighted least squares

approach, where the weighted distance between estimates of the �rst two stages

and known functions of the structural parameters are minimized (for details see

K�usters, 1987, or, Schepers, 1991).

The `generalized estimating equations' or GEE approach proposed by Liang

and Zeger (1986) originally was developed for the estimation of regression param-

eters in panel or multivariate models, where the association between the responses

was treated as a nuisance. Furthermore, instead of estimating the correlations

in the underlying model, the correlations in the observed responses are modeled.

The regression parameters are estimated iteratively by �nding a solution to the

so-called `generalized estimating equations'

nX
i=1

X 0

iDiW
�1
i ei = 0;

where ei = (yi � �(Xi�)), �(�) denotes the standard normal cumulative dis-

tribution function and is a model of the expectation of the vector variable yi =

(yi1; : : : ; yij)
0. The matrix Di is a diagonal matrix with diagonal elements

@�(x0ij�)=@�ij, where xij is the vector of exogenous variables of cluster i at ob-
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servation point j and �ij = x0ij�. The matrix Wi is a covariance matrix of the

observed responses and is a function of a `working' correlation matrix, where the

association structure between the responses is modeled. At every iteration this

correlation matrix is calculated using the estimated residuals êi = (yi � �(Xi�̂))

(for details see Spiess and Hamerle, 1995).

If in the underlying model an equicorrelation structure with a positive cor-

relation is assumed, then maximum likelihood estimation of the random e�ects

probit model leads to ML estimates of the regression and correlation parameters

(e.g. Butler and MoÆt, 1982; for details see Spiess and Hamerle, 1995).

In a �rst simulation study the following factors were variied: The type of corre-

lation matrix (Equicorrelation structure and autoregressive correlation structure

of order one (AR(1))), the value of the correlation structure parameter (0:2 and

0:8) and the sample size (n = 50; 100; 250; 500; 1000). According to every model

speci�cation, 500 data sets were generated. Three covariates were generated:

One dichotomous, one normally and one uniformly distributed covariate. All

covariates variied over the nt observations but were held constant over the 500

simulated data sets generated according to each model speci�cation. For every

subject t = 5 observations were simulated for every model speci�cation.

The results of this simulation experiment suggest that the GEE as well as the

ML estimation procedure is robust with respect to convergence of the estimates.

On the other hand, the MECOSA estimation procedure failed to converge more

often for data sets with small to medium sample sizes. Not surprisingly, the larger

the sample size, the smaller the bias of all estimators. For the model speci�cations

considered, there were no systematic and signi�cant di�erences in the biases of the

estimators. Concerning eÆciency, there were no signi�cant di�erences between

ML and GEE estimators for low `true' correlations. For moderate to high serial

correlations, ML estimators were the most eÆcient estimators. The MECOSA

estimators turned out to be the most ineÆcient estimators. Moreover, for sample

sizes smaller than n = 1000 the root mean squared errors were signi�cantly

underestimated using the MECOSA approach. In general, the GEE approach

seems to be superior to the MECOSA approach concerning convergence of the

estimates as well as eÆciency of the estimators in �nite samples (see also Spiess

and Hamerle, 1995).

The �rst part of table 1 in section 3.2 | as an example | gives the estimation
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results using the ML, GEE and MECOSA approach for a model with t = 5, n =

500, 500 simulated data sets, one dichotomous, one normally and one uniformly

distributed covariate and corresponding `true' values of the regression parameters

�d = 1, �n = 1 and �gl = �1. The `true' value of the parameter weighting the

constant term was �k = �:2 and the `true' value of the correlation was � = :8.

However, to save space only the estimation results for �gl and � are given.

3.2 Part II: Estimation of regression and correlation struc-

ture parameters

Unfortunately, the GEE approach as proposed by Liang and Zeger (1986) does

not allow the estimation of the underlying correlations. Therefore, based on an

extended GEE approach proposed by Prentice (1988), in their work Qu, Williams,

Beck and Medendorp (1992) and Qu, Piedmonte and Williams (1994) propose the

simultaneous, iterative estimation of both sets of parameters, that is, of the re-

gression parameters and of the correlation structure parameters of the underlying

model, using generalized estimating equations (GEEQu approach). The estimat-

ing equations for the regression parameters are the same as in the GEE approach

described above, up to the covariance matrix Wi, the elements of which are now

estimated variances and covariances of the observed responses modeled using uni-

and bivariate standard normal cumulative distribution functions and estimated

correlation structure parameters. The estimating equations for the correlation

structure parameters, denoted as #B, are given by the equations

X
i

E0

iM
�1
i vi = 0:

The elements of the column vector vi are the di�erences between the t� (t�1)=2

cross products of the residuals eij and eij0 and the corresponding o�-diagonal

elements of Wi. The matrix Mi is a diagonal matrix with the variances of the

cross-products of the residuals on the diagonal. The matrix E0

i is the derivative

of the o�-diagonal elements of Wi with respect to the structural parameter #B.

In the mixed approach the regression parameters are iteratively estimated

using the generalized estimating equations as in the approach proposed Qu et al.

(1992) and Qu et al. (1994). However, the correlation structure parameters are

estimated simultaneously using pseudo-score equations (GEPSE approach). The
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pseudo-score equations are given by

X
i

E0

iV
�1
i wi = 0:

The elements of the vector wi are all t(t�1)=2 possible di�erent products (2yij�

1)(2yij0�1), Vi is a diagonal matrix with the probabilities of the variables yij and

yij0 taking on speci�c values, given the covariates, regression parameters and the

correlation, on the diagonal and E0

i is the same as in the approach proposed by

Qu et al. (1992) and Qu et al. (1994). Note that the above pseudo-score equations

are just the vector of �rst derivatives of the pseudo-maximum likelihood function

with respect to #B

l(#B) =
X
i

li(#B) =
X
i

X
j;j0

(j0<j)

logPi(j;j0);

set to zero, where summation is over the probabilities of all possible t(t � 1)=2

pairs of responses taking on speci�c values. In this formulation, pairs of responses

are assumed to be independent (Spiess, 1998; Spiess and Keller, 1999). Both sets

of parameter estimates, i.e. regression and correlation structure parameter esti-

mates, are calculated as if the estimators were orthogonal, thereby preserving the

robustness of the regression parameter estimators with respect to misspeci�ca-

tion of the correlation matrix. In contrast to the pseudo-ML approach proposed

by Gourieroux, Monfort and Trognon (1984) where the regression parameters are

estimated under the assumption of independence, using the mixed approach, the

regression parameters are estimated taking the associations between the responses

into account.

In the second simulation study data sets were generated according to the

same model speci�cations as in the �rst simulation study. However, only samples

of sizes n = 50; 100; 500 were generated. As in the �rst simulation study, the

ML estimator of the random e�ects probit model was calculated as a reference

estimator in the equicorrelation case.

The results of this second simulation experiment suggest that all three esti-

mation procedures (GEEQu, GEPSE and ML) are equally robust with respect to

convergence of the estimates. If convergence problems occured, then they mainly

occured in small samples. As expected, there were no di�erences for the regres-

sion parameters in the two non-ML approaches. However, there were signi�cant
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di�erences with respect to the correlation structure parameters. Whereas for

low `true' correlations the di�erences between the approaches were very small,

for moderate and high `true' correlations, the GEPSE estimator was the most

eÆcient non-ML estimator for all models considered and generally led to very

eÆcient regression and correlation structure parameter estimators relative to the

ML approach (cf. Spiess, 1998).

Again, as an example, the estimation results for �gl and � are given for the

model described in section 3.1 using the GEPSE approach and the approach

proposed by Qu et al. (1992) and Qu et al. (1994), denoted as GEEQu approach

(see the second part of table 1).

Table 1: Mean (m), estimated standard deviation (csd) and root mean squared

error (rmse) of the estimates of �gl and � using di�erent estimation approaches

for a model with n = 500, t = 5, �gl = �1 and an equicorrelation structure

(� = :8) over s simulations

m

csd ML GEE MECOSA GEPSE GEEQu

rmse
s = 500 s = 500 s = 497 s = 500 s = 500

�1:0067 �1:0051 �0:9986 �1:0062 �1:0062

�̂gl 0:0872 0:0935 0:1035 0:0884 0:0884

0:0856 0:0901 0:1104 0:0854 0:0855

0:8009 0:7995 0:8005 0:8012

�̂ 0:0244 0:0237 0:0242 0:0344

0:0253 0:0274 0:0266 0:0356

4 The mixed approach for the estimation of the

general model

Since the mixed approach was superior to the MECOSA approach and the ap-

proach proposed by Qu et al. (1992) and Qu et al. (1994) in the simulation studies,

it is extended to the estimation of parameters of general mean and covariance
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structure models with continuous and/or ordered categorical responses, where

a binary response can be considered as a special case of an ordered categorical

response.

The generalized estimating equations for the estimation of the parameters of

the mean structure are given by

nX
i=1

X 0

iDiW
�1
i ei = 0;

where ei = (yi � E(yi)) and E(yi) is a model of the expectation of the vector

of responses yi. The expectations now depend on the measurement level of the

responses. If yij is continuous, then the expectation simply is 
j + �0jxi, where


j and �j are the mean structure parameters of the reduced form at observation

point j. If the response is ordered categorical with k+1 possible di�erent values,

then the di�erence of a k-dimensional vector of binary variables, yij, and a vector

of corresponding expectations enter into the generalized estimating equations.

Note that the exogenous variables in Xi can be arranged according to the model

assumptions. For example, in the general model Xi = It 
 x0i, where It is the

(t� t)-identity matrix and 
 denotes the Kronecker product. Accordingly, �(#)

can be vectorized, so that �(#)xi = XiVec(�(#)). As in the binary case, Wi

is a model for the covariance matrix of the observed responses, i.e. a matrix

composed of variances and covariances of continuous and/or binary variables.

The elements of the matrixWi are estimated using the estimates of the correlation

structure parameters. For the estimation of the covariance part of the reduced

form, (pseudo-) score equations are used: If responses are continuous, then score

equations are used, if ordered categorical responses are considered, then, as in

the binary case, pseudo-score equations are used.

The parameter estimates are calculated iteratively. Since the simulation re-

sults suggest that the simultaneous estimation of the parameters leads to esti-

mates with smaller variances than their estimation in several steps, the structural

parameter estimates as well as the parameter estimates of the reduced form are

estimated within the same iteration step.

Like in the binary case, the asymptotic covariance matrix can be estimated

by a so-called sandwich form, and is a function of the generalized estimating

equations, (pseudo-) score equations and expected and exact derivatives thereof

(for the binary case see Spiess, 1998, or, Spiess and Keller, 1999).
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5 Discussion

The simulation studies revealed that, for the binary panel probit model, the

mixed approach leads to relative more eÆcient estimates than the MECOSA

approach or the approach proposed by Qu et al. (1992) and Qu et al. (1994).

Furthermore, the mixed approach was more robust with respect to convergence of

the estimates than the MECOSA approach. Although the mixed approach seems

to be a promising candidate for the estimation of mean and covariance structure

models, up to now no simulations have been run to evaluate this approach in the

light of these more general models. However, this is the work to be done in the

near future.

If as a consequence of the results of the simulation study using more general

models it can be concluded that the mixed approach still seems to be superior

to e.g. the MECOSA approach, then it could be generalized to estimate models

with classi�ed metric responses and one or two-sided censored responses with

threshold values known a priori as well. Furthermore, the extension to mean

and covariance structure panel models would be desirable. However, for panel

models, the problems of initial conditions in dynamic models would have to be

taken into considerations.
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