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Abstract

We extend the analysis of Christoffersen and Diebold (1998) on long-run forecasting in cointegrated

systems to multicointegrated systems. For the forecast evaluation we consider several loss functions,

each of which has a particular interpretation in the context of stock-flow models where multicointe-

gration typically occurs. A loss function based on a standard mean square forecast error (MSFE)

criterion focuses on the forecast errors of the flow variables alone. Likewise, a loss function based

on the triangular representation of cointegrated systems (suggested by Christoffersen and Diebold)

considers forecast errors associated with changes in both stock (modelled through the cointegrat-

ing restrictions) and flow variables. We suggest a new loss function which is based on the triangular

representation of multicointegrated systems which further penalizes deviations from the long-run rela-

tionship between the levels of stock and flow variables as well as changes in the flow variables. Among

other things, we show that if one is concerned with all possible long-run relations between stock and

flow variables, this new loss function entails high and increasing forecasting gains compared to both

the standard MSFE criterion and Christoffersen and Diebold’s criterion. The paper demonstrates the

importance of carefully selecting loss functions in forecast evaluation of models involving stock and

flow variables.

Keywords: Multicointegration, Forecasting, Loss function, VAR models.

JEL Classification Codes: C32, C53.
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1 Introduction

Assessing the forecasting performance of econometric models is an important ingredient in model evalua-

tion. In multivariate models containing non-stationary variables, cointegration may be thought to play a

key role in assessing forecasting ability, especially over long horizons, because cointegration captures the

long-run comovement of variables. Several studies have investigated the forecasting properties of cointe-

grated models. Engle and Yoo (1987) make a small Monte Carlo study where they compare mean-squared

forecast errors from a VAR in levels, which does not impose cointegration, to forecasts from a correctly

specified error-correction model (ECM), which does impose cointegration, and they find that longer-run

forecasts from the ECM are more accurate. This result supports the above intuition that imposing coin-

tegration gives better long-horizon forecasts for variables that are tied together in the long run. However,

subsequent research has somewhat questioned and modified this – at first glance appealing – conclusion.

According to Christoffersen and Diebold (1998), the doubts on the usefulness of cointegrating restric-

tions on the long-run forecasts are related to the following conjecture: The improved predictive power

of cointegrating systems comes from the fact that deviations from the cointegrating relations tend to be

eliminated. Thus, these deviations contain useful information on the likely future evolution of the cointe-

grated system which can be exploited to produce superior forecasts when compared to those made from

models that omit cointegrating restrictions. However, since the long-run forecast of the cointegrating

term is always zero, this information is only likely to be effective when focus lies on producing short-run

forecasts. Hence, at least from this point of view, the usefulness of imposing cointegrating relations for

producing long-run superior forecasts can be questioned.

Clements and Hendry (1995) compare mean-squared error forecasts from a correctly specified ECM

to forecasts from both an unrestricted VAR in levels and a misspecified VAR in first-differences (DVAR)

omitting cointegrating restrictions present amongst the variables. They find that the forecasting superi-

ority of the model that correctly imposes the cointegrating restrictions crucially depends upon whether

the forecasts are for the levels of the variables, their first-differences, or the cointegrating relationship
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between the variables. They show that this difference in ranking for alternative yet isomorphic represen-

tations of the variables is due to the mean-squared forecast error (MSFE) criterion not being invariant to

nonsingular, scale-preserving linear transformations of the model. In particular, they show that forecasts

from the ECM model are not superior to those made from the DVAR model but at the shortest forecast

horizons when first-differences of I(1) variables are forecasted.

Christoffersen and Diebold (1998) compare mean-squared error forecasts of the levels of I(1) variables

from a true cointegrated VAR to forecasts from correctly specified univariate representations, and similarly

they find that imposing cointegration does not improve long-horizon forecast accuracy. Thus, it appears

that the simple univariate forecasts are just as accurate as the multivariate forecasts when judged using

the loss function based on the MSFE criterion. They argue that this apparent paradox is caused by the

standard MSFE criterion failing to value the long-run forecasts’ hanging together correctly. Long-horizon

forecasts from the cointegrated VAR always satisfy the cointegrating restrictions exactly, whereas the

long-horizon forecasts from the univariate models do so only on average, but this distinction is ignored in

the MSFE criterion. Christoffersen and Diebold suggest an alternative criterion that explicitly accounts

for this feature. The criterion is based on the triangular representation of cointegrated systems (see

Campbell and Shiller, 1987, and Phillips, 1991). The virtue of this criterion is that it assesses forecast

accuracy in the conventional ”small MSFE” sense, but at the same time it makes full use of the information

in the cointegrating relationships amongst the variables. Using this new forecast criterion, they indeed

find that at long horizons the forecasts from the cointegrated VAR are superior to the univariate forecasts.

Christoffersen and Diebold (1998) demonstrate that the reason for Engle and Yoo’s (1987) Monte Carlo

experiment to turn out favorable to a model with cointegrating restrictions is not due to the fact that

such long-run relations are imposed but rather that the correct number of unit roots is imposed.

The purpose of the present paper is twofold. First, we extend the analysis of Christoffersen and

Diebold to the case where the variables under study not only obey cointegrating relationships, but also

obey certain multicointegrating restrictions. The concept of multicointegration was originally defined by

Granger and Lee (1989, 1991) and refers to the case where the underlying I(1) variables are cointegrated
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in the usual sense and where, in addition, the cumulated cointegration errors cointegrate with the original

I(1) variables. Thus, essentially there are two levels of cointegration amongst the variables and hence a

common feature in the form of a stochastic trend will exist at different levels of the multiple time series.

Multicointegration is a very convenient way of modeling the interactions between stock and flow

variables. Granger and Lee consider the case where the two I(1) flow variables production, yt, and sales,

xt, cointegrate, such that inventory investments, st, are stationary, st ≡ yt − βxt ∼ I(0), but where

the cumulation of inventory investment, It ≡ Σt
j=1sj , i.e. the level of inventories (which is then an I(1)

stock variable), in turn cointegrates with either yt or xt, or both of them. Another example, analyzed

by Lee (1992) and Engsted and Haldrup (1999), is where yt is new housing units started, xt is new

housing units completed, st is uncompleted starts, and hence It is housing units under construction.

Leachman (1996), and Leachman and Francis (2000) provide examples of multicointegrated systems with

government revenues and expenditures, and a country’s exports and imports, respectively. Here the stock

variable is defined as the government debt and the country’s external debt, such that each variable is the

cumulated series of past government and trade deficits, respectively. Yet another example is provided

by Siliverstovs (2001) who analyzes consumption and income, and where cumulated savings (i.e. the

cumulation of the cointegrating relationship between income and consumption) constitutes wealth, which

further cointegrates with consumption and income.

We investigate how the presence of multicointegration affects long-run forecasting comparisons. In

particular, we set up a model that contains both cointegrating and multicointegrating restrictions, and

we examine how forecasts from this multicointegrated system compare to univariate forecasts. The

comparison is done in terms of the ratio of the (trace) mean-squared forecast errors, but we follow

Christoffersen and Diebold (1998) in using both a standard loss function and a loss function based on the

triangular representation of the cointegrated system. For a model with multicointegrating restrictions

the standard trace mean-squared forecast error criterion entails a loss function that penalizes forecast

errors associated with the levels of flow variables whereas the loss function associated with the triangular

representation penalizes forecast errors of changes in both the flow and the stock variables.
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As the second purpose of the paper, we are concerned with the fact that, when the loss function of

Christoffersen and Diebold (1998) is applied to the multicointegrated systems, it focuses exclusively on the

maintenance of the cointegrating restrictions while ignoring multicointegrating restrictions present in the

data. This corresponds to ignoring how the levels of both stock and flow variables are related. To this end,

we propose a new loss function that is based on the triangular representation of the multicointegrating

variables. The distinctive feature of the suggested loss function is that it explicitly acknowledges the

maintenance of the multicointegrating restrictions in the data. Moreover, we argue that this loss function

follows naturally from models of optimizing behaviour with proportional, integral, and derivative control

mechanisms, see e.g. Phillips (1954, 1957), Holt et al. (1960), Hendry and von Ungern Sternberg (1981),

and Engsted and Haldrup (1999), and hence has a theoretical founding known from classical stock-flow

models. The implications of using this new loss function in assessing the forecast accuracy between the

system and univariate forecasts are also scrutinized.

Our most important results can be summarized as follows. First we find that the general result of

Christoffersen and Diebold (1998) derived for a standard cointegration model carries over to multicoin-

tegrated models, that is, based on a standard MSFE criterion, long-horizon forecasts of the levels of

I(1) (flow) variables from the multicointegrated system are found not to be superior to simple univariate

forecasts. However, based on the triangular MSFE criterion (accounting for changes in both stocks and

flows), the system forecasts are clearly superior to the univariate forecasts. This result demonstrates

that as long as the comparison is between the standard MSFE loss function and the triangular MSFE

loss function, multicointegration will have no influence on the conclusions drawn by Christoffersen and

Diebold. Hence, if the loss function reflects changes in the flow variables, or changes in both the flow

and stock variables, then there is really no new insights to be gained from multicointegration in terms

of the forecasting properties. However, in stock-flow models one will typically prefer a loss function that

also values forecast errors associated with the linkage between the levels of stock and flow variables. Our

suggested loss function is doing just that. As a second important result, it is shown that our loss func-

tion reflects increasing forecasting gains (for the forecast horizon tending to infinity) when mean squared
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forecast errors from a multicointegrated system are compared to those of univariate forecasts. These

results illustrate the importance of carefully selecting loss functions for systems involving stock and flow

variables.

In order to make our main points as clear as possible we make a number of simplifications throughout

the article. First, we do not discuss estimation and testing. Testing for multicointegration and estimation

of models with multicointegrating restrictions are most naturally conducted within an I(2) cointegration

framework, see Engsted, Gonzalo and Haldrup (1997), Haldrup (1998), Engsted and Johansen (1999),

and Engsted and Haldrup (1999). However, since our primary interest is on the particular dynamic

characteristics of multicointegration with respect to forecasting, we abstract from estimation issues and

hence assume known parameters. Second, in order to ease the exposition we employ the simplest model

with relevant multicointegrating restrictions: a bivariate, low-order model with no deterministic terms.

Our bivariate setup is further motivated by the fact that all applications of multicointegration in the

literature have been performed for systems of just two variables. Third, while we consider a number

of different loss functions to evaluate the forecasts, all the forecasts considered are calculated using the

traditional mean squared forecast error criterion (i.e. the forecasts are the conditional means). Thus,

we do not consider extensions in the form of Clements and Hendry’s (1993) Generalized Forecast Error

Second Moment (GFESM) measure, or linear and asymmetric loss functions, as in e.g. Basu and Markov

(2003) and Elliot, Komunjer and Timmermann (2003), but we realize that such extensions will be relevant

in future research. Finally, we do not investigate the consequences of forecasting with misspecified models.

Our primary focus is on the choice of loss function when a forecaster cares about all possible long-run

relations amongst stock and flow variables, and in so doing we follow Christoffersen and Diebold (1998) in

comparing only forecasts from systems with all long-run relationships imposed to forecasts from correctly

specified univariate representations.

The rest of the paper is organized as follows. In Section 2 we set up the multicointegrated systems

used in the subsequent analysis. Also, we derive the corresponding univariate representations of the

system variables. Section 3 derives the expressions for system and univariate forecasts and the associated
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forecasting errors. In Section 4 we demonstrate the implications on model ranking using various loss

functions and the final section concludes.

2 Multivariate and univariate representations of the multicoin-

tegrating variables

In this section we define the multicointegrated model and derive the corresponding univariate represen-

tations of the system variables.

2.1 Multicointegrated system.

Consider the two I(1) flow variables, xt and yt, that obey a cointegrating relation

yt − λxt ∼ I (0) , (1)

such that the cumulated cointegration error

t∑

j=1

(yj − λxj) ∼ I (1)

is an I(1) variable by construction. We refer to the system as multicointegrated when there exists a

stationary linear combination of the cumulated cointegrating error and the original variables, e.g.

t∑

j=1

(yj − λxj)− αxt ∼ I (0) . (2)

As discussed in Granger and Lee (1989, 1991), the multicointegrating restrictions are likely to occur

in stock-flow models, where both cointegrating relations have an appealing interpretation. The first

cointegrating relation (1) is formed between the original flow variables, for example, production and sales,

income and expenditures, exports and imports, etc. The second cointegrating relation (2) represents the

relation between the cumulated past discrepancies between the flow variables, for instance: the stock

of inventories, the stock of wealth, the stock of external debt, and all or some flow variables present in

the system. It implies that the equilibrium path of the system is maintained not only through the flow
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variables alone, but also through additional forces tying together the stock and flow series and in so doing

providing a second layer of equilibrium.

It is convenient to represent the system of multicointegrating variables in the triangular form



(1− L) 0

−λ(1− L)−1 − α (1− L)−1







xt

yt


 =




e1t

e2t


 , (3)

where L is the lag operator, (1−L) is the difference operator, and (1−L)−1 is the summation operator,

such that when the latter operator is applied to an I(1) time series the resulting time series is I(2)

by construction, i.e. (1 − L)−1xt =
∑t

j=1 xj . For simplicity, it is assumed that the disturbances are

uncorrelated at all leads and lags, i.e. E (e1t−je2t−i) = 0, ∀ j 6= i for j = 0,±1,±2, ... and i = 0,±1,±2, ...,

and the variances of the disturbances e1t and e2t are given by σ2
1 and σ2

2 , respectively, for all t. Hence xt

is considered a strictly exogenous variable.

If we denote the generated I(2) variables by capital letters, i.e. Yt =
∑t

j=1 yj and Xt =
∑t

j=1 xj , then

the system can be written

∆xt = e1t

Yt = λXt + αxt + e2t.

Observe that it closely resembles the so called polynomially cointegrating system where original I(2)

variables cointegrate with their own first differences, see Rahbek, Kongsted, and Jørgensen (1999), and

Banerjee, Cockerell, and Russell (2001) for examples.1

Below we provide two equivalent representations of the system in (3). The Vector Error-Correction

model (VECM) can be represented as follows



∆xt

∆yt


 =




0

−1


 [yt−1 − λxt−1] +




0

−1


 [Yt−1 − λXt−1 − αxt−1] +




e1t

(λ + α) e1t + e2t


 .

As seen, the VECM explicitly incorporates both cointegration levels, see equations (1) and (2) , that are

present in the multicointegrated system. Alternatively, the multicointegrated system (3) can be given the
1The only difference between multi- and polynomially cointegrated models is that in the former case the I(2) variables

are generated from the original I(1) variables, whereas in the latter case I(2) variables are the original time series.
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moving-average (MA) representation



∆xt

∆yt


 = C (L) et =




1 0

[λ + (1− L) α] (1− L)2







e1t

e2t


 . (4)

Granger and Lee (1991) argue that the necessary and sufficient condition for xt and yt to be multicoin-

tegrated is that the determinant of C (L) should have a root (1− L)2 . This condition is clearly satisfied

for our simple system.

2.2 Univariate representations.

In this section we derive the implied univariate representations for the I(1) variables xt and yt. Of course,

for xt the univariate representation is just

xt = xt−1 + e1t.

In deriving the implied univariate representation for yt we follow Christoffersen and Diebold (1998) by

matching the autocovariances of the process ∆yt. From the MA-representation of ∆yt we have

∆yt = [λ + (1− L)α] e1t + (1− L)2 e2t,

yt = yt−1 + zt,

(5)

where the process zt corresponds to the MA(2) process

zt = ut + θ1ut−1 + θ2ut−2, ut ∼ IID
(
0, σ2

u

)

with θ1, θ2, and σ2
u being parameters defined in the technical appendix.

3 Long-run forecasting in multicointegrated systems.

In this section we derive expressions for forecasts of the levels of I(1) variables as well as the corresponding

forecast errors both from the system and univariate representations.
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3.1 System forecasts of I(1) variables.

The MA-representation of the multicointegrating variables (4) allows us to write the future values of the

system variables in terms of xt and future innovations e1t+h and e2t+h

xt+h = xt +
h∑

i=1

e1t+i, (6)

yt+h = λxt + λ

h∑

i=1

e1t+i + αe1t+h + ∆e2t+h.

Correspondingly, the h-steps ahead forecasts for the I(1) variables are given by2

x̂t+h = xt,

ŷt+h = λxt (7)

for all forecast horizons but h = 1. In the latter case we have

x̂t+1 = xt

ŷt+1 = λxt − e2t = λxt − [Yt − λXt − αxt] . (8)

In particular, observe that the long-run forecasts from the multicointegrated system maintain the cointe-

grating relation exactly

ŷt+h = λx̂t+h, for h > 1. (9)

Continuing, the forecast errors are

ε̂x,t+h =
h∑

i=1

e1t+i ∀h > 0, (10)

ε̂y,t+h =





λe1t+1 + αe1t+1 + e2t+1 = (λ + α) e1t+1 + e2t+1 for h = 1

λ
∑h

i=1 e1t+i + αe1t+h + ∆e2t+h for h > 1.

(11)

Furthermore, note that the forecast errors and the original system as in (4) follow the same stochastic

process, i.e. 


∆ε̂x,t+h

∆ε̂y,t+h


 =




1 0

λ + α (1− L) (1− L)2







e1t+h

e2t+h


 . (12)

2Subsequently, ”c. . .” will be associated with system forecasts whereas ”f. . .” signifies forecasts from univariate models.
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3.2 Univariate forecasts of I(1) variables.

Next, we turn to forecasting of the I(1) variables based on the correctly specified implied univariate

representations. Future values of xt+h are given in equation (6) above and for yt+h

yt+h =





yt + zt+1 = yt + ut+1 + θ1ut + θ2ut−1, h = 1

yt +
∑h

i=1 zt+i = yt + ut+1 + θ1ut + θ2ut−1 + ut+2 + θ1ut+1 + θ2ut +
∑h

i=3 zt+i, h > 1.

The corresponding h−steps ahead forecasts for I(1) variables can now be derived as follows. The

forecast for xt is the same as the system forecast

x̃t+h = x̂t+h = xt,

whereas the forecast ỹt+h is given by

ỹt+h =





yt + θ1ut + θ2ut−1, for h = 1

yt + θ1ut + θ2ut−1 + θ2ut = yt + (θ1 + θ2)ut + θ2ut−1, for h > 1.

The forecast error for xt+h reads

ε̃x,t+h = ε̂x,t+h =
h∑

i=1

e1t+i. (13)

The corresponding forecast error ε̃y,t+h = yt+h − ỹt+h for yt is

ε̃y,t+h =





ut+1, for h = 1

ut+1 + ut+2 + θ1ut+1 +
∑h

i=3 zt+i =

(1 + θ1 + θ2)
∑h−2

i=1 ut+i + (1 + θ1)ut+h−1 + ut+h, for h > 1.

(14)

4 Assessing the forecast accuracy.

We now investigate the implications of using different specifications of the loss functions on model ranking

based on the long-run forecasts. Subsequently we explore how the long-run forecasts compare when judged

in terms of three different loss functions. The first is the traditional trace MSFE loss function which

penalizes forecast errors associated with the flow variables. The second is the triangular trace MSFE loss
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function based on the triangular representation of the standard I(1) cointegrated system as suggested

in Christoffersen and Diebold (1998), which in a multicointegrated model corresponds to penalizing loss

associated with forecast errors for the changes in the stock variable as well as changes in one of the

flow variables. The last loss function we term the extended triangular loss function which is based on

the triangular representation of the multicointegrating variables and thus extending Christoffersen and

Diebold (1998) to such systems. This loss function explicitly incorporates the linkage between the levels

of stock and flow variables.

4.1 Traditional trace MSFE loss function.

First we use the trace MSFE criterion to compare the forecast accuracy of the multivariate and univariate

forecast representations. The traditional trace MSFE loss function reads

trace MSFE = E







v1t+h

v2t+h




′ 


v1t+h

v2t+h





 , (15)

where v1t+h and v2t+h are the forecast errors of the I(1) flow variables. As seen, only the losses associated

with flow variables are penalized in this case.

4.1.1 Trace MSFE for system forecasts.

Using the expressions for the system forecast errors in (10) and (11) we can calculate the following forecast

error variances

V ar (ε̂x,t+h) = hσ2
1 ∼ O (h) , for h > 0 (16)

V ar (ε̂y,t+h) =





(λ + α)2 σ2
1 + σ2

2 , for h = 1

λ2σ2
1h +

[
(λ + α)2 − λ2

]
σ2

1 + 2σ2
2 ∼ O (h) , for h > 1.

(17)

Notice that the variance of the system forecast error for yt+h and xt+h is growing of order O (h) . Then,

for the system forecasts we have

trace ̂MSFE =





σ2
1 + (λ + α)2 σ2

1 + σ2
2 , h = 1

λ2σ2
1h +

[
(λ + α)2 − λ2

]
σ2

1 + 2σ2
2 + hσ2

1 , h > 1.

(18)
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4.1.2 Trace MSFE for univariate forecasts.

Using expressions (13) and (14) we can calculate the variance of the univariate forecast errors

V ar (ε̃x,t+h) = V ar (ε̂x,t+h) = hσ2
1 ∼ O (h) . (19)

V ar(ε̃y,t+h) =





σ2
u, for h = 1

[
(1 + θ1 + θ2)

2 (h− 2) + (1 + θ1)
2 + 1

]
σ2

u =

= λ2σ2
1 (h− 2) +

[
(1 + θ1)

2 + 1
]
σ2

u ∼ O (h) , for h > 1.

(20)

Observe that similar to the system forecast errors the variance of the univariate forecast errors grows of

order O(h). As a result we have

trace ˜MSFE =





σ2
1 + σ2

u, h = 1

λ2σ2
1 (h− 2) +

[
(1 + θ1)

2 + 1
]
σ2

u + hσ2
1 ∼ O (h) , h > 1.

(21)

4.1.3 Trace MSFE ratio.

Comparing the forecast accuracy of the system- and univariate models, we get

trace ˜MSFE

trace ̂MSFE
=

hσ2
1 + λ2 (h− 1)σ2

1 − λ2σ2
1 +

[
(1 + θ1)

2 + 1
]
σ2

u

hσ2
1 + λ2 (h− 1)σ2

1 + (λ + α)2 σ2
1 + 2σ2

2

∼ O(h)
O(h)

→ 1. (22)

As seen, for h →∞ this ratio approaches 1 since the coefficients to the leading terms both in the nomina-

tor and denominator are identical. That is, on the basis of the traditional forecast comparison criterion

(trace MSFE ratio) it is impossible to distinguish between the model with imposed multicointegration

restrictions and the model that ignores these restrictions completely. Thus, the conclusion of the use of

the traditional trace MSFE ratio in assessing long-run system- and univariate forecasts in the multicoin-

tegrated systems coincides with that of Christoffersen and Diebold (1998) derived for the standard I(1)

cointegrated model.

4.2 Triangular trace MSFE loss function.

In this section we investigate the implications of using the loss function suggested in Christoffersen and

Diebold (1998) to long-run forecasts of the multicointegrating variables. Recall that this loss function
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has been proposed for evaluating long-run forecasts in the standard I(1) cointegrated system. The main

point that we want to make is that the motivation for using Christoffersen and Diebold’s loss function in

the standard I(1) cointegrated systems carries over to the multicointegrating setup in a straightforward

manner. This justifies the use of their loss function in multicointegrated models if the forecast evaluator

is not concerned with losses associated with the linkage between the levels of stock and flow variables.

This loss function has the interpretation of attaching loss to forecast errors associated with changes in

stock and flow variables as opposed to the standard trace MSFE criterion which only accommodates

losses associated with forecasting levels of flow variables.

First, it is worthwhile reviewing related results of Christoffersen and Diebold (1998) for the long-run

forecasts in standard I(1) cointegrated systems. As discussed above, Christoffersen and Diebold (1998)

show that when comparing the forecasting performance of models that impose cointegration and correctly

specified univariate models in terms of the MSFE ratio, there are no gains of imposing cointegration

except at the shortest forecast horizons. The problem is that the MSFE criterion fails to acknowledge the

important distinction between long-run system forecasts and univariate forecasts. That is, the intrinsic

feature of the long-run system forecasts is that they preserve the cointegrating relations exactly, whereas

the long-run forecasts from the univariate models satisfy the cointegrating relations only on average. As

a result, the variance of the cointegrating combination of the system forecast errors will always be smaller

than that of the univariate forecast errors.

Therefore, if one can define a loss function which recognizes the distinction between system- and

univariate forecasts, then it becomes possible to discriminate between the forecasts made from these

models. Christoffersen and Diebold (1998) show that such a loss function can be based on the triangular

representation of cointegrating variables, see Campbell and Shiller (1987), and Phillips (1991). In its

simplest form a standard cointegrated system for I(1) flow variables reads



1− L 0

−λ 1







z1t

z2t


 =




v1t

v2t


 ,

where it is assumed that the disturbance terms are uncorrelated at all leads and lags. The corresponding
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loss function, introduced in Christoffersen and Diebold (1998), looks as follows

trace MSFEtri = E







v1t+h

v2t+h




′

K




v1t+h

v2t+h





 , where K =




1− L 0

−λ 1




′ 


1− L 0

−λ 1


 . (23)

It is instructive to compare this with the traditional MSFE used in other studies, see equation (15), where

K = I. The trace MSFEtri criterion values small forecast errors as does the traditional MSFE criterion,

but at the same time it also values maintenance of the cointegrating restrictions amongst the generated

forecasts. The forecast accuracy of a given model is judged upon the linear transformations of the

corresponding forecast errors v1t+h and v2t+h of the I(1) flow variables. Observe that for multicointegrated

series the cointegrating combination of the forecast errors v2,t+h − λv1,t+h corresponds to the forecast

errors of changes in the stock variable whereas (1− L) v1,t+h is the forecast error of changes in a flow

variable.

4.2.1 Triangular trace MSFE for system forecasts.

In order to use the triangular trace MSFE criterion we need to compute the variance of the cointegrating

combination of the forecast errors. Using expressions (10) and (11), it follows that

V ar (ε̂y,t+h − λε̂x,t+h) =





α2σ2
1 + σ2

2 , for h = 1

α2σ2
1 + 2σ2

2 , for h > 1
(24)

which is finite for all forecast horizons. Then, using the expression V ar((1 − L)ε̂x,t+h) = σ2
1 we can

calculate the triangular trace MSFE for the system forecasts

trace M̂SFEtri =





α2σ2
1 + σ2

2 + σ2
1 , for h = 1

α2σ2
1 + 2σ2

2 + σ2
1 , for h > 1.

(25)

Observe that in this simple model the trace M̂SFEtri is the same for all forecast horizons except for h = 1.

The reason for the difference that occurs when h = 1 can be seen from equations (7) and (8) which show

that the multicointegrating term is in the information set for h = 1 and it has expectation zero for h > 1.
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4.2.2 Triangular trace MSFE for univariate forecasts.

The triangular trace MSFE for univariate forecasts reads

trace M̃SFEtri =





V ar(ε̃y,t+h)− V ar(ε̂y,t+h) + α2σ2
1 + σ2

2 + σ2
1 , for h = 1

V ar(ε̃y,t+h)− V ar(ε̂y,t+h) + α2σ2
1 + 2σ2

2 + σ2
1 , for h > 1

(26)

which is finite for all forecast horizons as well due to the fact that the variance of the cointegrating

combination of the univariate forecast errors is O(1), see the technical appendix. The expressions for

V ar(ε̂y,t+h) and V ar(ε̃y,t+h) are defined in (17) and (20), respectively.

4.2.3 Triangular trace MSFE ratio.

Using expressions (25) and (26) we can now compute the trace MSFE ratio’s

trace M̃SFE
h=1

tri

trace M̂SFE
h=1

tri

= 1 +
V ar(ε̃y,t+h)− V ar(ε̂y,t+h)

α2σ2
1 + σ2

2 + σ2
1

> 1, (27)

trace M̃SFE
h>1

tri

trace M̂SFE
h>1

tri

= 1 +
V ar(ε̃y,t+h)− V ar(ε̂y,t+h)

α2σ2
1 + 2σ2

2 + σ2
1

> 1. (28)

The trace MSFEtri ratio is constant and greater than one as the system forecasts based on the full

information is more accurate than the univariate forecasts based on the partial information, i.e.

[V ar(ε̃y,t+h)− V ar(ε̂y,t+h)] > 0 for all h > 0. Expressed in terms of the model parameters, expressions

(27) and (28) read

trace M̃SFE
h=1

tri

trace M̂SFE
h=1

tri

=
σ2

u − λ2σ2
1 − 2λασ2

1 + σ2
1

α2σ2
1 + σ2

2 + σ2
1

> 1,

trace M̃SFE
h>1

tri

trace M̂SFE
h>1

tri

=

[
(1 + θ1)

2 + 1
]
σ2

u − 2λ2σ2
1 − 2λασ2

1 + σ2
1

α2σ2
1 + 2σ2

2 + σ2
1

> 1.

In summary, several of the results in Christoffersen and Diebold (1998) derived for standard cointe-

grated systems carry over to models that obey multicointegrating restrictions. First, long-run forecasts

generated from the multicointegrated system preserve the cointegrating relations exactly, see (9). Second,

the system forecast errors follow the same stochastic process as the original variables, as depicted in (12) .

Third, the variance of the cointegrating combination of the system forecast errors is finite (see (24)) even
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though the variance of the system forecast errors of the individual variables grow of order O (h), as seen in

expressions (16) and (17). Fourth, the variance of the cointegrating combination of the univariate forecast

errors is finite too, even though the variance of the univariate forecast errors grows of order O (h), see

expressions (19) and (20). Fifth, imposing the multicointegrating restrictions does not lead to improved

long-run forecast performance over the univariate models when compared in terms of the ratio of the

traditional mean squared forecast error criterion, as shown in (22). Finally, adoption of a loss function

based on the triangular representation of the standard I(1) cointegrated system leads to superior ranking

of the system forecasts over their univariate competitors, see expressions (27) and (28).

4.3 An extended triangular trace MSFE loss function.

The loss function of Christoffersen and Diebold (1998) incorporates only the first layer of cointegration

while ignoring the second – the multicointegrating restriction. We now propose a new loss function based

on the triangular representation of the multicointegrating system given in equation (3)

trace MSFE?
tri = E







v1t+h

v2t+h




′

K∗




v1t+h

v2t+h





 (29)

with the K∗ matrix given by

K∗ =




(1− L) 0

−λ(1− L)−1 − α (1− L)−1




′ 


(1− L) 0

−λ(1− L)−1 − α (1− L)−1




and v1t+h and v2t+h are the forecast errors of the I(1) flow variables. Again, the suggested loss function

can be considered a generalization of the traditional trace MSFE loss function presented in equation (15),

where the K∗ matrix is the identity matrix. The loss function (29) reflects the costs of deviating from

the multicointegrating relation and hence explicitly accounts for the fact that the levels of stock and

flow variables are directly interrelated3. Our proposed loss function has the obvious advantage that it
3Note that as opposed to the traditional trace MSFE criterion (15), use of the trace MSFE∗tri criterion (29) as well as the

trace MSFEtri criterion of Christoffersen and Diebold (1998), (23), requires knowledge about the (λ, α) and λ parameters,

respectively, i.e. the parameters defining the long run relations. In practice, these parameters will most often have to be
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incorporates all possible long-run relations between the flow variables yt and xt. A more explicit economic

motivation for the loss function can be given by reference to Granger and Lee (1990) and Lee (1996), where,

in a particular linear quadratic adjustment cost model of optimizing behavior, agents want to predict and

minimize losses associated with both a flow-target discrepancy and a stock-target discrepancy in addition

to adjustment costs. In the case of production, sales and inventories, for example, firms may have a target

for both sales and inventories, and face costs associated with changing production. Thus, discrepancies

between the stock and flow variable targets (i.e. the multicointegrating relation) and the differences in

the flow variables are explicitly penalized. As seen, this corresponds closely to the losses implied by our

TMSFE∗tri criterion. A behavioral model that can generate multicointegration arises naturally in stock-

flow models where losses are associated with PID control, that is, control systems with proportional,

integral, and derivative control mechanisms also known from control engineering, see e.g. Phillips (1954,

1957), Holt et al. (1960), and Hendry and von Ungern Sternberg (1981).

We now illustrate the implications of using the new loss function on model ranking.

4.3.1 Trace MSFE?
tri for system forecasts.

The calculation of the trace M̂SFE
?

tri requires evaluation of the variance of the multicointegrating com-

bination of the system forecast errors

(1− L)−1ε̂y,t+h − λ(1− L)−1ε̂x,t+h − αε̂x,t+h = ε̂Y,t+h − λε̂X,t+h − αε̂x,t+h,

where we have denoted the cumulative forecast errors as ε̂X,t+h and ε̂Y,t+h. These are the forecast errors

of the levels of the generated I(2) variables Xt+h and Yt+h, respectively.

The variance of the multicointegrating combination of the system forecast errors as derived in the

technical appendix reads

V ar (ε̂Y,t+h − λε̂X,t+h − αε̂x,t+h) = σ2
2 , (30)

estimated. When only the forecast and/or forecast errors are available it may thus be a practical problem to use these

criteria without further information.
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which is finite, and for our simple model it is constant for all forecast horizons h > 0 as there is no short-

run dynamics. In addition, observe that the corresponding forecast error variances of the transformed

forecast errors V ar (ε̂X,t+h) and V ar (ε̂Y,t+h) are of the order O
(
h3

)
.

The finding of a finite variance of the multicointegrating combination of the forecast errors is similar

to that of Christoffersen and Diebold (1998), and Engle and Yoo (1987) for I(1) systems with standard

cointegrating restrictions. This is due to the fact that the forecast errors follow the same stochastic process

as the forecasted time series, as shown in (12). As a consequence, the forecast errors are integrated of the

same order and share the multicointegrating properties of the system dynamics as well.

Combining expression (30) with the expression V ar((1 − L)ε̂x,t+h) = σ2
1 we can calculate the trace

MSFE?
tri for the system forecasts as

trace M̂SFE
?

tri = σ2
2 + σ2

1 . (31)

4.3.2 Trace MSFE?
tri for univariate forecasts.

Next, we calculate the variance of the multicointegrating combination of the forecast errors from the

univariate representation. Straightforward but tedious algebra relegated to the technical appendix yields

V ar (ε̃Y,t+h − λε̃X,t+h − αε̃x,t+h) = [V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] + σ2
2 ,

which combined with the result V ar((1 − L)ε̃x,t+h) = σ2
1 yields the following expression for the trace

MSFE?
tri for the univariate forecasts

trace M̃SFE
?

tri = [V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] + σ2
2 + σ2

1 ∼ O(h2). (32)

Observe that although each of the terms V ar (ε̃Y,t+h) and V ar (ε̂Y,t+h) are O(h3), their difference

[V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] is O(h2).
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4.3.3 Ratio trace MSFE?
tri of the univariate to system forecasts.

Using equations (31) and (32) we can compute the trace MSFE?
tri ratio of the univariate to system

forecasts

trace M̃SFE
?

tri

trace M̂SFE
?

tri

=
[V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] + σ2

2 + σ2
1

σ2
2 + σ2

1

= 1 +
[V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)]

σ2
2 + σ2

1

> 1.

Intuitively, this inequality holds as the forecasts that utilize all the information in the system (system

forecasts) will produce a smaller forecast error variance than the ones that are based on the partial

information (univariate forecasts). It also resembles the trace MSFEtri ratio in (27) and (28) .

Using these results it is seen that

trace M̃SFE
?

tri

trace M̂SFE
?

tri

=
O

(
h2

)

O (1)
→∞ as h →∞. (33)

This means that we would prefer the model with multicointegrating restrictions using this criterion.

In fact, there are high (increasing) gains to be achieved in using the new loss function both over the

traditional MSFE loss function and the triangular MSFE loss function suggested in Christoffersen and

Diebold (1998). The result (33) emphasizes that if in fact the forecast evaluator is concerned with losses

associated with the stocks and flows not deviating too much from their steady state level as is done in

e.g. inventory models with PID control, then this should be reflected in the loss function. As seen, huge

gains can be achieved from the system forecast when compared to using simple univariate forecasts.

5 Conclusions.

In this paper we have extended the analysis of Christoffersen and Diebold (1998) to multicointegrated

systems. The motivation has been that in multicointegrated systems a complicated dynamic interaction

of flow and stock variables may take place and in forecasting such variables a range of loss functions are

available when evaluating and comparing forecasts from different models. Christoffersen and Diebold’s

analysis can be conducted by assuming multicointegrated series rather than cointegrated series in the

usual I(1) sense. When this occurs the variables can be given a particular interpretation. A loss function
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based on a standard trace mean square forecast error criterion corresponds to forecast evaluation where

the forecast errors associated with the flow variables enter the loss function. On the other hand, the loss

function of Christoffersen and Diebold, based on the triangular representation of cointegrated systems,

can be expressed in terms of losses associated with forecast errors of changes in both the flow and

stock variables. Although this loss function penalizes deviations from the cointegrating relation only and

completely ignores the multicointegrating restrictions, when applied to forecasts from multicointegrated

models, it clearly favours those over the univariate model forecasts. Notwithstanding, if a forecaster is

concerned with the multicointegrating nature of the forecasted variables a new loss function is required.

This function can be derived from the triangular representation of a multicointegrated system and we

show that such a function will penalize deviations from a long-run stock and flow relation. In fact, the

suggested loss function appears to have huge gains when compared to forecasts of the implied univariate

models.

We do not want to take a strong stand upon which loss function to use in practice when evaluating

different models. In this paper we have compared model forecasts from a correctly specified univari-

ate model with that of a correctly specified system forecast. In model selection based on forecasting

performance, one may prefer choosing a loss function which favors models which incorporate stronger

(multicointegrating) restrictions on the variables than models which do not (i.e. the univariate models).

Ultimately, however, the loss function to be chosen will reflect the preferences of the analyst.

The paper highlights the importance of carefully selecting loss functions when evaluating forecasts

from cointegrated systems, and it shows how different loss functions based on a MSFE criterion help

selection of competing models of increasing complexity. Comparing competing models, some of which

are potentially incorrectly specified, is a different, though very relevant, issue. Deriving new results for

multicointegrated systems along these lines, for instance by extending the work of Clements and Hendry

(1995) to multicointegrated systems, is a topic for future research.
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A Technical Appendix.

A.1 Derivation of the implied univariate representation for ∆yt, section 2.2.

From (5) the MA(2) process for ∆yt reads

zt = [λ + (1− L)α] e1t + (1− L)2 e2t = ut + θ1ut−1 + θ2ut−2. (34)

The autocovariance structure for zt reads

γz (0) =
[
(λ + α)2 + α2

]
σ2

1 + 6σ2
2

γz (1) = −α (λ + α)σ2
1 − 4σ2

2

γz (2) = σ2
2

γz (τ) = 0, |τ | ≥ 3.

This is a MA(2) process with the non-zero first and second autocorrelations. The first autocorrelation
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coefficient is

ρz (1) =
−α (λ + α) σ2

1 − 4σ2
2[

(λ + α)2 + α2
]
σ2

1 + 6σ2
2

=
−α (λ + α) q − 4[

(λ + α)2 + α2
]
q + 6

ρz (2) =
σ2

2[
(λ + α)2 + α2

]
σ2

1 + 6σ2
2

=
1[

(λ + α)2 + α2
]
q + 6

,

where

q =
σ2

1

σ2
2

is the signal-to-noise ratio.

From this we infer values for the parameters θ1 and θ2. By denoting

A = [−α (λ + α) q − 4] B =
[
(λ + α)2 + α2

]
q + 6

and after some algebra it follows that

θ1 =
θ2

(1 + θ2)
A

and θ2 is one of the roots of the fourth-order polynomial

θ4
2 + (2−B) θ3

2 +
(
A2 − 2B + 2

)
θ2
2 + (2−B) θ2 + 1 = 0.

Observe that the coefficient values θ1 and θ2 should satisfy the invertibility conditions for the MA(2)

process zt. The variance σ2
u is found from the following expression

σ2
u =

[
(λ + α)2 + α2

]
σ2

1 + 6σ2
2

(1 + θ2
1 + θ2

2)
or σ2

u =
σ2

2

θ2
.

Furthermore, the following relation holds

λ2σ2
1 = (1 + θ1 + θ2)

2
σ2

u. (35)

A.2 Derivation of the Trace MSFEtri for univariate forecasts, section 4.2.2.

First, we derive the variance of the cointegrating combination of the univariate forecast errors

V ar (ε̃y,t+h − λε̃x,t+h) = V ar (ε̃y,t+h) + λ2V ar (ε̃x,t+h)− 2λcov(ε̃y,t+h, ε̃x,t+h),
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using expressions (19) and (20) and the following expression for the covariance term

cov(ε̃y,t+h, ε̃x,t+h) = λhσ2
1 + ασ2

1 .

The variance of the cointegrating combination of the univariate forecast errors reads

V ar (ε̃y,t+h − λε̃x,t+h) =





σ2
u − λ2σ2

1 − 2λασ2
1 , for h = 1

−2λ2σ2
1 − 2λασ2

1 +
[
(1 + θ1)

2 + 1
]
σ2

u, for h > 1,

(36)

which is finite for all forecast horizons.

Using expression V ar((1− L)ε̂x,t+h) = σ2
1 , we have

trace M̃SFEtri =





σ2
u − λ2σ2

1 − 2λασ2
1 + σ2

1 , for h = 1
[
(1 + θ1)

2 + 1
]
σ2

u − 2λ2σ2
1 − 2λασ2

1 + σ2
1 , for h > 1.

Further simplification results in

trace M̃SFEtri =





σ2
u − λ2σ2

1 − 2λασ2
1 − α2σ2

1 + α2σ2
1 + σ2

1 , for h = 1
[
(1 + θ1)

2 + 1
]
σ2

u − 2λ2σ2
1 − 2λασ2

1 − α2σ2
1 + α2σ2

1 + σ2
1 , for h > 1,

trace M̃SFEtri =





σ2
u − (λ + α)2 σ2

1 − σ2
2 + α2σ2

1 + σ2
2 + σ2

1 , for h = 1
[
(1 + θ1)

2 + 1
]
σ2

u − (λ + α)2 σ2
1 − λ2σ2

1 − 2σ2
2 + 2σ2

2 + α2σ2
1 + σ2

1 , for h > 1.

Using expressions (17) and (20) we have the following expression for the triangular trace MSFE for

univariate forecasts

trace M̃SFEtri =





V ar(ε̃y,t+h)− V ar(ε̂y,t+h) + α2σ2
1 + σ2

2 + σ2
1 , for h = 1

V ar(ε̃y,t+h)− V ar(ε̂y,t+h) + α2σ2
1 + 2σ2

2 + σ2
1 , for h > 1

(37)

which is finite for all forecast horizons as well.
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A.3 Derivation of the Trace MSFE?
tri for system forecasts, section 4.3.1.

Using the results from Section 3 we can compute the following transformations of the system forecast

errors

ε̂x,t+h =
h∑

i=1

e1t+i

ε̂X,t+h = (1− L)−1ε̂x,t+h =
h∑

q=1

ε̂x,t+q =
h∑

q=1

q∑

i=1

e1t+i =
h∑

i=1

(h + 1− i) e1t+i

ε̂Y,t+h = (1− L)−1ε̂y,t+h =
h∑

q=1

ε̂y,t+q =
h∑

i=1

[λ (h + 1− i) + α] e1t+i + e2t+h.

The variance of the multicointegrating combination of the forecast errors is

V ar (ε̂Y,t+h − λε̂X,t+h − αε̂x,t+h) = σ2
2 ,

which is finite, and for our simple model it is constant for all forecast horizons h > 0 as there is no

short-run dynamics.

In addition, observe that the corresponding forecast error variances of the transformed forecast errors

are of the order O
(
h3

)
as seen below

V ar (ε̂X,t+h) = V ar

(
h∑

q=1

q∑

i=1

e1t+i

)
=

h (h + 1) (2h + 1)
6

σ2
1 ∼ O

(
h3

)

V ar (ε̂Y,t+h) =
h (h + 1) (2h + 1)

6
λ2σ2

1 + 2αλ
h (h + 1)

2
σ2

1 + hα2σ2
1 + σ2

2 ∼ O
(
h3

)
.

Using the expression V ar((1 − L)ε̂x,t+h) = σ2
1 we can calculate the trace MSFE?

tri for the system

forecasts

trace M̂SFE
?

tri = σ2
2 + σ2

1 . (38)



27

A.4 Derivation of the variance of the multicointegrating combination of uni-

variate forecast errors, section 4.3.2.

The transformation of the forecast errors for xt+h yields the following

ε̃x,t+h =
h∑

i=1

e1t+i

ε̃X,t+h = (1− L)−1ε̃x,t+h =
h∑

q=1

q∑

i=1

e1t+i =
h∑

i=1

(h + 1− i) e1t+i.

The corresponding transformation of the forecast errors for yt+h reads

ε̃Y,t+1 = (1− L)−1ε̃y,t+1 = ut+1

ε̃Y,t+h = (1− L)−1ε̃y,t+h =

=
h−2∑

i=1

{(1 + θ1 + θ2) (h− 2− i + 1) + (1 + θ1) + 1}ut+i + ((1 + θ1) + 1) ut+h−1 + ut+h.

Then, we calculate the variance of the multicointegrating combination of the forecast errors from the

univariate representation

V ar (ε̃Y,t+h − λε̃X,t+h − αε̃∆X,t+h) =

= V ar (ε̃Y,t+h − λε̃X,t+h) + α2V ar (ε̃∆X,t+h)− 2αCov (ε̃Y,t+h − λε̃X,t+h, ε̃∆X,t+h) =

= V ar (ε̃Y,t+h) + λ2V ar (ε̃X,t+h)− 2λCov (ε̃Y,t+h, ε̃X,t+h) + α2V ar (ε̃∆X,t+h)

−2αCov (ε̃Y,t+hε̃∆X,t+h) + 2αλCov (ε̃X,t+h, ε̃∆X,t+h) .

Thus, in order to calculate the variance of the multicointegrating combination of the forecast errors we

need to derive the following expressions

V ar (ε̃Y,t+h) = (1 + θ1 + θ2)
2 (h− 2) (h− 2 + 1) (2 (h− 2) + 1)

6
σ2

u

+2 ((1 + θ1) + 1) (1 + θ1 + θ2)
(h− 2) (h− 2 + 1)

2
σ2

u

+((1 + θ1) + 1)2 (h− 1)σ2
u + σ2

u

V ar (ε̃X,t+h) = V ar

(
h∑

q=1

q∑

i=1

e1t+i

)
=

(
h2 + (h− 1)2 + .. + 1

)
σ2

1 =
h (h + 1) (2h + 1)

6
σ2

1

V ar (ε̃∆X,t+h) = hσ2
1
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Cov (ε̃Y,t+h, ε̃X,t+h) = λ
h (h + 1) (2h + 1)

6
σ2

1 + α
h(h + 1)

2
σ2

1

Cov (ε̃Y,t+h, ε̃∆X,t+h) = λ
h(h + 1)

2
σ2

1 + αhσ2
1

Cov (ε̃X,t+h, ε̃∆X,t+h) = Cov

(
h∑

q=1

q∑

i=1

e1t+i,

h∑

i=1

e1t+i

)
=

h(h + 1)
2

σ2
1

These expressions imply that

V ar (ε̃Y,t+h − λε̃X,t+h − αε̃∆X,t+h) =

= V ar (ε̃Y,t+h)− λ2 h(h+1)(2h+1)
6 σ2

1 − 2αλh(h+1)
2 σ2

1 − α2hσ2
1 =

= V ar (ε̃Y,t+h)− [
V ar (ε̂Y,t+h)− σ2

2

]
= [V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] + σ2

2 .

Using equation (35), we get the following

[V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] = −h2λ2σ2
1 − (h− 1)2 λ2σ2

1 + 2 (2 + θ1) (1 + θ1 + θ2)
(h−2)(h−2+1)

2 σ2
u

+ (2 + θ1)
2 (h− 1)σ2

u + σ2
u − 2αλh(h+1)

2 σ2
1 − hα2σ2

1 − σ2
2 .

As seen, even though each of the expressions V ar (ε̃Y,t+h) and V ar (ε̂Y,t+h) is O(h3), their difference

[V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] is O(h2).


