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The Bias of Technological Change in Europe 

Johanna Vogel, Kurt Kratena, Kathrin Hranyai (WIFO) 

Contribution to the Project 

This paper provides empirical evidence in favour of a policy strategy that can make economic 
growth both more socially inclusive and ecologically sustainable. Thus it contributes significantly 
to the WWWforEurope project, which aims to achieve a more dynamic growth path for Europe 
that also involves greater social inclusion and ecological sustainability. In modern growth 
theories, the speed of economic growth is determined by the rate of technological change, and 
the intensity of use of various factor inputs in production is influenced by the factor bias or 
direction of technological change. Our research addresses the question how to shift the bias of 
technological change towards using more labour and less energy. To this end, we first measure 
the bias for European countries, and upon finding that it has been labour-saving and energy-
using, we identify policy variables that can stimulate labour-using and energy-saving 
technological change. The results indicate that to make economic growth both more socially 
inclusive and ecologically sustainable, one strategy would be to reduce energy use by 
increasing energy taxes and to raise employment of low-skilled workers, who have seen 
demand for their labour decline the most according to our estimates, by making employers pay 
less social security for them. Governments could accomplish this shift in the bias of 
technological change away from saving labour towards saving energy in a budget-neutral 
fashion by using the revenue generated through higher energy taxes to make up for the shortfall 
in social security payments. A follow-up study, currently in progress, will simulate the overall 
economic impact of changes in the policy instruments on labour and energy demand, taking into 
account feedback effects throughout the economy. This allow for an evalution whether overall, 
the strategy proposed in this paper entails a trade-off between raising employment and reducing 
energy use. In general however, the changes in energy taxes and social security contributions 
can be adjusted in a way that maximises the desired positive employment and negative energy 
demand effects. 
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Abstract 
This paper is concerned with measuring and influencing the direction of technological change. 
First, it provides a comprehensive assessment of the factor bias of technological change using 
panel data from the World Input-Output Database (WIOD) for 25 EU countries from 1995 to 
2009. We measure the bias with respect to the inputs capital, energy, non-energy materials and 
three types of labour (low-, medium- and high-skilled). For this purpose, the factor cost share 
approach based on the duality of production theory is applied. Estimating the system of cost 
share equations derived from a translog cost function, we find that technological change was 
low- and medium-skilled labour-saving, high-skilled labour-using, and energy- and materials-
using. Second, the paper addresses the question how technological change could be redirected 
towards saving more energy and less labour. Patent applications in energy- and labour-saving 
technology fields are used to model the direction of technological change. We construct stocks 
of patents in these fields and integrate them into the system of cost share equations as proxies 
for the level of technology. Upon finding that they were indeed energy and labour saving over 
our sample period, we regress them on policy variables to identify instruments for shifting the 
bias away from saving labour towards saving energy. We conclude that one way to achieve this, 
at least partly, would be an increase in the energy tax rate coupled with a matching reduction in 
the social security contributions paid by employers for low-skilled workers. 
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1. Introduction 

Technological change and its direction are among the most discussed issues of our time in 
economic circles and among the interested public. In modern theories of economic growth 
(Romer, 1990; Aghion and Howitt, 1992; Acemoglu, 2002), the rate of technological change 
determines the speed of growth, while its direction or factor bias indicates which factor inputs 
are used more intensively in production: labour, capital, energy or other intermediate inputs. 

Evidence from research on skill-biased technological change and labour market 
polarisation suggests that technological change has tended to be labour saving in industrialised 
countries since the mid-20th century. In particular, advances in computing and other information 
and communications technologies (ICT) have been complementary to highly skilled labour 
performing non-routine cognitive tasks, while substituting for routine tasks performed by 
medium-skilled workers. As a result, some of the latter have shifted into low-skilled service 
occupations, where non-routine manual tasks have so far not been easily automatable. The 
consequence has been a “hollowing-out” of the employment distribution across skill levels, with 
medium-skill employment levels declining the most (Acemoglu and Autor, 2011; Autor and Dorn, 
2013; Goos, Manning and Salomons, 2009). For the future, Frey and Osborne (2013) and 
Brynjolfsson and McAfee (2014) predict that technological change may be even more strongly 
biased against labour, as advances in machine learning and robotics coupled with big data will 
enable machines to replace workers even in non-routine tasks, both manual and cognitive. 
According to Frey and Osborne (2013), although occupations at all skill levels will be affected, 
the most dramatic impact will be on low-skilled jobs - with almost every other American job 
under threat over the next decades - while high-skilled occupations requiring tasks like 
perception, manipulation and social or creative intelligence are less susceptible to automation. 

For policy-makers in Europe, where unemployment levels are high following the financial 
and economic crisis of the late 2000s, the prospect of further technological unemployment 
poses considerable challenges. The prediction that most of the gains from technological 
progress will accrue only to the most talented and creative individuals, if fulfilled, has major 
implications for economic inequality, a problem that has gained renewed attention since the 
crisis.1

                                                      
1 The remarkable success of Thomas Piketty’s “Capital in Twenty-First Century” is a good indication. In a dedicated 

recent special report, The Economist (2014) forecasts “the global eclipse of labour”, as “the digital revolution opens 
up a great divide between a skilled and wealthy few and the rest of society”. 

 Although the previous major waves of technological change, the first and second 
industrial revolutions, have over the long term led to the emergence of new industries with new 
opportunities for employment, in the short term it may be difficult to avoid big disruptions. Hence 
the question arises whether government policy can influence the direction of technological 
change to steer it away from saving labour. The state has already played an important role in 
supporting the emergence of major new technologies in the last decades, among others in 
energy-related fields (Mazzucato, 2013). While arguments of economic efficiency can be made 
in favour of the latter - reducing the negative environmental externalities associated with current 
technologies - equity considerations would support stimulating labour-friendly technological 
change. To date however, little research is concerned with how this could be achieved. 
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Regarding energy, the long-standing problems of climate change and finite fossil energy 
resources have given rise to a substantial literature evaluating the effectiveness of government 
climate policy instruments like taxes and subsidies in terms of reducing energy use and 
emissions in computational models of the economy (e.g. CGE models). Within these, the 
representation of technology plays a major role. Early models often used a simple time trend, 
implying that technology changes at a constant exogenous rate. The recent literature 
incorporates insights from endogenous growth theory and represents technology as a stock of 
knowledge which accumulates as a result of firm R&D investments and is sometimes measured 
using patent data (Sue Wing, 2006; Gillingham, Newell and Pizer, 2008). Technological change 
is then the outcome of innovative activity within the model and therefore endogenous.2

This paper sets out to address two issues. First, it aims to measure the factor bias of 
technological change in Europe from 1995 to 2009 using panel data at the country and sector 
level from the socio-economic and environmental accounts of the World Input-Output Database 
(WIOD). The results indicate that over the period under investigation, technological change had 
a small energy-using bias and a substantial labour-saving bias, especially regarding low- and 
medium-skilled workers; for high-skilled labour, our evidence is consistent with skill-biased 
technological change. Second, based on these results, the paper aims to identify policy 
variables that could shift the bias towards being more labour using and energy saving.

 
Moreover, when environmentally-friendly innovations respond to policy instruments, the 
direction or bias of technological change itself becomes endogenous. How to redirect 
technological change away from fossil fuels by inducing energy-saving innovation has been an 
active area of research for almost two decades. Among the policy instruments considered are 
taxes on carbon emissions and (fossil) energy consumption, government expenditures on R&D 
in environment- and energy-related fields or subsidies for private R&D, and regulations like 
environmental performance or technology standards (Popp, Newell, and Jaffe, 2010). 

3

                                                      
2 Sue Wing (2006) emphasizes the difference between short-run substitution effects and long-run impacts of 

endogenous technological change. Hence policy instruments like taxes influence the input of production factors not 
only in the short run but, in the case of endogenous technological change, also in the long run. This additional 
impact can reinforce the desired outcome and significantly reduce the costs of adjustment of environmental policy. 

 To do 
so, we endogenise the direction of technological change regarding energy and labour in the first 
part by modelling the level of technology in energy- and labour-saving fields as stocks of 
knowledge based on cumulated patent applications. Measuring the bias of technological change 
in these fields confirms its energy- and labour-saving nature. This sets the stage for part two of 
the empirical analysis, where we econometrically relate technological change in energy- and 
labour-saving fields, proxied with the flow of patent applications, to policy variables that could 
induce more of the former and less of the latter. In a follow-up study, we will bring the two parts 
of the analysis together to simulate the overall economic impact of changes in the policy 
instruments on labour and energy demand. This will be done within the dynamic New Keynesian 
(DYNK) model developed in Kratena and Sommer (2014a), which is a complete model of the 
economy and thus allows us to take into account feedback effects of policy changes. 

3 The idea behind this shift is to alter the direction of technological change while leaving its rate unchanged. However, 
if a given unit change in the policy variables affects the biases to different orders of magnitude, the overall impact on 
the rate of technological change may not be neutral. 
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To date, little empirical evidence exists on the factor bias of technological change, 
particularly across the EU countries. Following Hicks' original conceptual discussion in The 
Theory of Wages (1932), an early literature analyses it using data for the United States (Sato, 
1970; Binswanger, 1974a; Kalt, 1978; Stevenson, 1980). More recently, empirical research on 
the skill bias of technological change and labour market polarisation investigates the bias for a 
subset of production factors, namely labour of different skill levels. Starting with Berman, Bound, 
and Griliches (1994), this literature has documented a positive empirical association between 
ICT investment, R&D or computer use and the increasing share of highly educated workers 
performing nonroutine cognitive tasks observed across industrialised countries (Autor, Levy, 
and Murnane, 2003; Michaels, Natraj and Van Reenen, 2014).4

A related empirical literature assesses the relationship between innovation and total 
employment using firm- or sector-level data, mostly from innovation surveys, for the European 
countries. At this level of disaggregation, it is possible to investigate the different channels 
through which innovations affect employment - both negatively (displacement effects) and 
positively (compensation effects) - and to distinguish between product and process innovations, 
which can have countervailing effects via the demand and productivity increases they generate. 
At the firm level, studies in this tradition tend to find a positive overall effect of innovation (e.g. 
Van Reenen, 1997), while at the sector level, negative impacts also emerge (Antonucci and 
Pianta, 2002).

 

5

In general however, the literature on productivity and growth assumes a certain direction 
of technological change without exploring it further. For example, growth accounting studies 
following Solow (1957) assume Hicks-neutral technological change, while labour-augmenting 
technological change underlies many models of economic growth. Two recent studies, 
Doraszelski and Jaumandreu (2014) and Verschelde et al. (2014), use firm-level data from 
Spain and Belgium to measure the bias. However, they focus on a single country and do not 
analyse energy as a separate input. They also remain silent on the second research question of 
this paper, how to shift the bias between two inputs, labour and energy in our case. 

 For product innovations and high-tech industries, a positive association with 
employment has been established (Bogliacino and Pianta, 2010; Bogliacino, Piva, and Vivarelli 
2012). For process innovations, empirical results are more ambiguous, although Harrison et al. 
(2014) show that accounting for positive compensation mechanisms turns a negative effect at 
the firm level into a positive one. More closely related to our research, which focuses on the 
country level and uses patent data to measure innovation, Feldmann (2013) finds a positive 
relationship between patenting and unemployment for a panel of 21 countries over 24 years. 

Hence the first contribution this paper makes to the literature is to comprehensively 
measure the bias of technological change across 25 EU countries with respect to the factor 
inputs capital, energy, non-energy intermediates and three types of labour (low-, medium- and 
high-skilled). The WIOD provides a suitable dataset on these inputs as well as on output and 
respective prices at the sectoral level. To measure the bias of technological change, we apply 

                                                      
4 See also Autor, Katz, and Krueger (1998) for the USA, Machin and Van Reenen (1998) for OECD countries and 

Piva, Santarelli, and Vivarelli (2005) for Italy, who highlight the role of skill-biased organisational change. 
5 The sectoral level of analysis allows evaluating the overall outcome of the firm-level mechanisms, including the 

indirect effect of innovations introduced at the firm level on demand for the output of competing firms (Pianta, 2005). 
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the standard empirical approach of estimating the system of factor cost share equations derived 
from a minimised cost function of the flexible translog form (Binswanger 1974a; Jorgenson, 
2000; Jin and Jorgenson, 2010). This approach is dual to estimating the factor demand 
equations derived from a production function and recovering factor-augmenting rates of 
technological progress from the estimates, as for instance Kalt (1978) and Doraszelski and 
Jaumandreu (2014) do. The main advantage of the cost share approach is that it avoids 
assuming a production function and hence imposing restrictions on technology parameters. For 
example, the frequently employed constant elasticity of substitution (CES) functional form 
essentially requires the elasticity of substitution to be identical for all input pairs, a restriction that 
is unlikely to hold in practice. By contrast, the translog functional form that is often assumed in 
the cost share approach is very general, as it approximates any twice-differentiable function to 
the second order. It imposes no a priori restrictions on substitution parameters and yields very 
simple expressions for the bias of technological change with respect to each factor input. 

Related to the second question addressed in this paper - how to shift the bias of 
technological change - there is an older theoretical literature on so-called induced innovation 
(e.g. Ahmad, 1966; Binswanger, 1974c) which is concerned with the effect of relative factor 
prices on the factor bias. This concept also originates in Hicks (1932), who noted that a change 
in factor prices should encourage inventions directed at saving the factor that had become 
relatively more expensive. In his models of directed technological change, Acemoglu (2002, 
2007) extends this earlier work by considering not only a price effect, but also an effect of 
relative factor supplies (“market size”) on the bias of technological change. The concepts of 
induced innovation and directed technological change have been applied most widely in 
environmental economics, where mechanisms for directing technological change away from 
energy-using “dirty” technology towards energy-saving or otherwise environmentally-friendly 
“clean” alternatives have been investigated (Acemoglu et al, 2012). 

Most closely related to the second part of our empirical analysis is Popp (2002), who 
estimates the effect of energy prices and energy R&D expenditures by the U.S. government on 
energy-saving innovation, measured by successful patent applications in energy-saving 
technology fields, for the United States from 1970 to 1994. Recently, Kruse and Wetzel (2014) 
have carried out a similar analysis for OECD countries. Both papers include as a third factor that 
can induce innovation in a certain direction a measure of the existing stock of knowledge 
available for inventors to build on at the time they carry out their research. This allows for path 
dependence in technological change and a “standing on the shoulders of giants” externality in 
knowledge production as in Romer (1990) and other models of endogenous growth. We 
implement this approach in the second part of our analysis, where we regress patent 
applications in energy- and labour-saving technology fields on factor prices, which can be raised 
and lowered through taxation, government R&D in energy- and labour-saving technologies and 
stocks of cumulated past patents. Thus we aim to identify policy levers that can stimulate 
energy-saving and attenuate labour-saving innovation. 

Overall, endogenously modelling technological change in energy- and labour-saving 
fields allows us to recommend a strategy that governments could follow to redirect (some part 
of) technological change away from saving labour towards saving energy. In addition, in doing 
so we add to the existing empirical literature that measures the factor bias of technological 
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change based on the same empirical approach as this paper - deriving factor biases from 
estimated parameters of a system of factor cost share equations - where technology is still often 
proxied with an exogenous time trend. The two-step approach we employ is very similar to Popp 
(2001, 2002), who combines estimates from a model of induced energy-saving technological 
change with those from a system of factor share equations where the stock of energy-saving 
patents represents the level of technology. He estimates the overall impact of an energy tax, via 
its effect on energy-saving innovation, on energy demand and finds a substantial long-run 
negative impact. We are not aware of empirical research using this framework to investigate 
induced labour-using technological change and shifting the factor bias from energy to labour. 

Therefore, our second contribution to the literature is endogenously modelling labour-
saving technological change in this setup by constructing a stock of patents in relevant fields 
and identifying policy instruments to induce less of it. Based on existing empirical evidence and 
the current policy debate, we use patent applications in ICT and advanced manufacturing 
technology fields to capture the potentially labour-saving nature of computers and robots. We 
take this route because classifications of labour-saving or -using technologies do not exist, while 
for energy-saving fields, we can rely on classifications of environment-related technologies 
developed at the OECD and the World Intellectual Property Office (WIPO) based on the 
International Patent Classification. The WIOD data also allow us to distinguish factor biases of 
technological progress in ICT and advanced manufacturing with respect to low-, medium- and 
high-skilled labour. Hence, to the extent that workers with different education levels sort into 
occupations requiring capabilities in different tasks, we are able to test the hypothesis that these 
technologies vary in their effects on labour demand across skill categories. 

In part two of the analysis, we find that a higher energy tax rate is associated with more 
energy-saving patents, while lower compensation of low-skilled labour is associated with less 
patenting in our measure of labour-saving fields. In particular, a ten percent increase in the 
energy tax rate would induce 2.1% more energy-saving patenting, and a ten percent decrease 
in low-skilled labour compensation would induce 5.1% fewer patent applications in ICT and 
advanced manufacturing. Hence the rate of energy-saving technological change could be 
stimulated by raising energy taxes, while the rate of technological change in labour-saving fields 
could be attenuated by reducing the compensation of low-skilled workers from the employer’s 
point of view, thus making them more attractive to hire. This can be achieved in a way that 
maintains their wage income by subsidising the social security contributions paid for them by 
employers, which together with wages and salaries constitute total labour compensation. By 
using the revenue generated through higher energy taxes to make up for the shortfall in social 
security receipts, governments could accomplish the shift in the bias of technological change 
away from saving labour towards saving energy in a budget-neutral fashion.6

The aim of this strategy is to affect the direction of technological change while leaving its 
overall rate unchanged. The required changes in the policy instruments can be calibrated 
accordingly based on our estimates. The caveat applies, however, that our modelling strategy 

 

                                                      
6 In terms of the measures taken, this strategy resembles a classical green tax reform, which uses taxes raised on 

environmentally harmful activities to lower the tax burden on labour. Based on our model however, they can have 
stronger effects on employment and energy use via their additional impact on the bias of technological change. 
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leaves part of technological change unexplained or exogenous, so only the component that is 
captured by our patent measures and amenable to policy influence can be redirected. The 
overall economic impact of changes in the policy instruments on the demand for labour and 
energy is the subject of ongoing research. 

The remainder of the paper is organised as follows. The next section introduces our 
approach to measuring the bias of technological change and compares it with related literature. 
Section 3 sets out the empirical framework, presenting the models we estimate to measure the 
bias and to investigate induced innovation in labour- and energy-saving fields. In section 4, the 
data are described, while in section 5 we present and discuss our estimation results. Section 6 
concludes and indicates directions for future research. 

2. Theoretical background and related literature 

2.1 Measuring the bias of technological change 

Conceptually, the factor bias of technological change was first described by Hicks (1932, p.121-
2): “[Concentrating] on labour and capital, ... we can classify inventions according as their initial 
effects are to increase, leave unchanged or diminish the ratio of the marginal product of capital 
to that of labour. We may call these inventions ’labour-saving’, ‘neutral’ and ‘capital-saving’ 
respectively. ‘Labour-saving’ inventions increase the marginal product of capital more than they 
increase the marginal product of labour; ‘capital-saving’ inventions increase the marginal 
product of labour more than that of capital; ‘neutral’ inventions increase both in the same 
proportion.” Hence following Hicks, the bias can be defined in terms of changes in the relative 
marginal products of two inputs, at given factor proportions, due to technological change. In the 
two-input case, technological change is biased towards capital or capital-using if:7

 

 

 𝐵 =  � 
∂ ln 𝑀𝑃𝐾

𝑀𝑃𝐿
∂ 𝑇

�
𝐾
𝐿�

> 0 (1) 

where B stands for bias, T represents an index of technology and MPK and MPL are the 
marginal products of capital and labour respectively. In the case of two inputs, a capital-using 
bias is by construction labour saving. Conversely, if the expression is negative, or if MPK / MPL 
in the numerator is replaced by MPL / MPK, technological progress is said to be biased towards 
labour, or labour using and capital saving. 

When the marginal product of capital increases relative to that of labour at given factor 
proportions, the rental rate of capital rises relative to the wage rate assuming perfectly 
competitive factor markets. Consequently, the share of capital in total cost increases while that 
of labour falls, as noted by Hicks (1932, p.122): “In every case, a labour-saving invention will 
diminish the relative share of labour in the national dividend. Exactly the same holds, mutatis 
mutandis, of a capital-saving invention.” This led Binswanger (1974a) to formulate a definition of 
the factor bias in terms of changes in the share of inputs in total cost due to technological 

                                                      
7  See also Acemoglu (2002) for a definition along these lines. 
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change. He points out that changes in factor cost shares that are observed in the data can be 
caused not only by biased technological change as described above, but also by changes in 
factor demand due to factor price changes. Therefore, when using data on cost shares to isolate 
the bias, relative factor prices must be held constant in order to control for such price-induced 
factor substitution. This implies the following definition of capital-biased technological change: 

 

 𝐵 = �∂ ln 𝑠𝐾
∂ 𝑇

 � 𝑟 𝑤⁄
> 0 (2) 

where sK is the share of capital in total cost, r is the rental rate of capital and w is the wage rate. 
Hence an increase in the (log of the) share of capital at given relative factor prices due to 
technological change implies that the latter is capital-using, which in the two-input case is again 
equivalent to labour-saving technological change. If the expression is negative, or if sK is 
replaced with sL in the numerator, technological change is biased towards labour, or labour 
using and capital saving. When there are more than two inputs, the cost share approach has the 
advantage that it yields a separate measure of the bias for each input, since the definition in (2) 
is not a relative expression in terms of any two of them. By contrast, the definition in (1) defines 
the bias relative to the nth input, so that biases are only measurable for n-1 inputs. 

The cost share approach to measuring the bias of technological change was formalised 
by Binswanger (1974a, 1974b), starting from a minimised cost function based on the duality of 
production theory. Every production function has as its dual a cost function that expresses the 
minimum cost of production as a function of input prices, the level of output and technology. 
Using Shephard’s lemma, the input shares in total cost can be obtained as the elasticities of the 
cost function with respect to the price of each input. Assuming a cost function of the translog 
form, simple expressions for the factor bias of technological change can then be derived from 
the estimated cost share equations. 

When implementing the cost share approach, the way technology is modelled plays a key 
role. Binswanger and other early studies (e.g. Stevenson, 1980) use a simple time trend to 
proxy the level of technology at each point in time. We do this in our baseline specification. Sato 
(2013) also takes this route in analysing the factor bias for Japanese industries from 1973 to 
2008. He finds that technological change was capital using, labour saving, electricity using and 
non-electricity energy saving. On the other hand, Jin and Jorgenson (2010) assume that the 
cost function and associated share equations represent a state-space model where technology 
and factor biases are latent state variables that they recover with the Kalman filter. Their 
findings for US industry data from 1960 to 2005 suggest that technological change was capital 
using, labour and materials saving, energy using before 1980 and energy saving afterwards.  

Cost share equations derived from a translog function have also been employed in the 
empirical literature on skill-biased technological change and labour market polarisation. For 
example, Michaels, Natraj and Van Reenen (2014) add ICT capital to the cost function as a 
quasi-fixed input and then investigate the relationship between ICT and the cost shares of low-, 
middle- and highly educated workers.8

                                                      
8  Other studies in this tradition using a similar approach are Berman et al (1994) and Machin and Van Reenen (1998). 

 We pursue a similar approach to integrate patent stocks 
into the cost function. Based on data for the US, Japan and nine EU countries between 1980 
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and 2004, Michaels et al. (2014) estimate that industries with rising ICT capital also registered a 
substantial increase in the share of highly educated workers and a decline in the share of 
middle-educated workers, with no significant effect on the least educated. After analysing the 
task content of occupations held by workers with different education levels, the authors 
conclude that ICT complements highly skilled workers performing non-routine cognitive tasks 
and substitutes medium-skilled workers carrying out routine tasks, while not affecting the low-
skilled, whose non-routine manual tasks have so far been less easy to automate. 

The main alternative to the cost share approach is the primal approach of assuming a 
production function with factor-augmenting technological change. A common choice in the 
literature is the constant elasticity of substitution (CES) function, which in the two-input case 
may be written as follows (e.g. Acemoglu, 2002): 

  𝑌 = [ 𝛾 (𝐴𝐿𝐿)
𝜎−1
𝜎 + (1 − 𝛾) (𝐴𝐾𝐾)

𝜎−1
𝜎 ]

𝜎
𝜎−1 , (3) 

where σ is the elasticity of substitution between labour and capital. Based on (3), Kalt (1978) 
and Doraszelski and Jaumandreu (2014) estimate the factor demand functions implied by firms’ 
optimising behaviour and use them to recover the rates of factor-augmenting technological 
change, i.e. the rates of change over time in the technology levels AL and AK. Setting these in 
relation to each other yields an indication of the factor bias using the definition in (1) that 
depends on the magnitude of the elasticity of substitution. As established by Acemoglu (2002), 
in the two-input case, labour-augmenting technological change is biased towards labour if σ > 1, 
i.e. when labour and capital are gross substitutes in production. If σ < 1 (gross complements), 
labour-augmenting technological change is biased towards capital. Hence estimates of σ must 
be obtained to infer the bias from rates of factor-augmenting technological change. Doraszelski 
and Jaumandreu (2014) assume a CES production function with the inputs capital, labour and 
materials and allow for capital- and labour-augmenting as well as Hicks-neutral technological 
change. Using firm-level data for Spain from 1990 to 2006, they find that the rate of labour-
augmenting technological change was larger than that of capital-augmenting technological 
change, together with σ < 1. Following the discussion above, this suggests that technological 
change is biased towards capital and therefore labour saving in their sample. The bias with 
respect to materials is not separately examined. 

The main drawback of the primal approach is that assuming a production function 
imposes restrictions on the technology parameters. For example, the CES function assumes 
that the elasticity of substitution is identical for all input pairs (Uzawa, 1962; McFadden, 1963), 
which is problematic in the case of more than two inputs. It is also contradicted by empirical 
findings based on functional forms that allow substitution patterns to differ between inputs, like 
the translog form. For example, Kratena and Wüger (2012), who use the cost share approach to 
investigate the impact of technological change on energy demand in Europe, find a variety of 
substitution patterns between inputs across industries. In the translog cost share approach, 
elasticities of factor substitution between each pair of inputs are derived as simple functions of 
the estimated coefficients (Binswanger,1974b). Verschelde et al. (2014) attempt to overcome 
this limitation of the primal approach by using nonparametric methods to fit production functions 
to the data locally instead of specifying a one-size-fits-all production function a priori. Based on 
firm-level data for Belgian manufacturing between 1996 and 2010, their estimates suggest that 
technological change was low-skilled labour saving in many sectors and materials and capital 
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using in a few. However, their data do not allow them to differentiate between high- and 
medium-skilled labour and energy is not considered as a separate input. 

2.2 Induced innovation and directed technological change 

The literature on induced innovation and directed technical change also takes its cue from Hicks 
(1932), who refers to the rising price of labour relative to capital as the main reason behind the 
predominance of labour-saving innovations (p.125-126): “A change in the relative prices of the 
factors of production is itself a spur to invention, and to invention of a particular kind - directed to 
economising the use of a factor which has become relatively expensive ... Let us call these 
‘induced’ inventions.” Accordingly, one key focus of empirical work in this area has been the role 
that factor prices can play in stimulating innovation and inducing technological change to take a 
desired direction. Governments can affect prices through taxes and subsidies, thus providing 
incentives for inventors and firms to develop ways to save on some inputs and use others. A 
higher price of fossil energy, for example, can be expected to spur innovative activity in 
technologies that lower the cost of energy input by raising energy efficiency or finding cheaper 
alternative sources (Lanzi and Sue Wing, 2010). Similarly, measures that lower the relative 
price of labour could be expected to reduce incentives for innovative activity directed towards 
saving labour. Hence compared to the first part of the empirical analysis in this paper, where we 
hold factor prices constant to examine the bias of technological change, in the second part we 
allow prices to vary as one way of shifting the bias or redirecting technological change. Besides 
relative prices, another policy lever that can provide incentives for innovative activity is 
government support for R&D investment in particular technologies. A notable recent example is 
the quite considerable government support for renewable energy technologies in some 
European countries in the last decades, for example in Germany. 

On the other hand, the evolutionary view of technological change emphasises its path-
dependent, cumulative nature and regards the effects of the incentives provided by prices and 
R&D support as limited since firms’ response in terms of their innovative activity is determined 
by and occurs within the current technological regime or trajectory (Dosi, 1988). In this view, 
technological change is not just seen as reacting passively to market demand and signals like 
relative prices or as an exogenous by-product of scientific discoveries,9

                                                      
9  These two views correspond respectively to the “market/demand-pull” and “science/technology-push” hypotheses 

regarding the drivers of innovation and technological change. 

 but also as 
endogenously driven by firms’ continual search for improved techniques given their current 
knowledge. Price and demand signals can play a role in bringing about new technological 
regimes in the longer term by influencing firms’ choices between alternative technologies (e.g. 
between fossil and renewable energy sources). Overall therefore, factors beyond relative prices 
and R&D support are likely to play a role in determining the direction of technological change. 
We account for the level of technological knowledge currently available for inventors to build on, 
which also features in theories of endogenous growth like Romer (1990), where increasing 
returns to knowledge make innovation less costly the higher the existing knowledge stock. 
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On induced energy-saving innovation, two related empirical studies employing a similar 
framework are Popp (2002) and Kruse and Wetzel (2014). Both investigate the role of energy 
prices, government R&D and the stock of energy-related patents on patenting activity, the 
former for the US and the latter for 26 OECD countries. Popp (2002) finds that while energy 
prices and the patent stock have sizeable positive effects on patenting in energy-saving fields, 
the effect of government energy R&D is either insignificant or negative. Kruse and Wetzel 
(2014) estimate separate models for 11 energy technologies from the World Intellectual 
Property Office’s Green Inventory using panel data on 26 OECD countries from 1982 to 2009. 
Their most consistent finding across technologies is a strong positive effect of the patent stock, 
while the sign and significance of the energy price and government R&D are heterogeneous. 
Estimating the model for all technologies combined yields an insignificant coefficient on the 
energy price and an only marginally significant but positive coefficient on R&D. We adopt a 
similar empirical model as Popp (2002) and Kruse and Wetzel (2014) but analyse the effect of 
the energy tax rate separately from the energy price. 

Regarding induced labour-saving innovation, Alesina, Battisti and Zeira (2015) investigate 
the effect of labour regulations that raise the wage of low-skilled workers relative to high-skilled 
ones on labour productivity and on high- and low-skill-intensive innovation. Their model predicts 
that labour regulation should induce more innovation - which is assumed to be labour-saving - in 
low-skill-intensive sectors and thus lead to higher labour productivity of low-skilled workers, with 
the opposite effect on high-skilled sectors and productivity. This is tested empirically using panel 
data for up to 42 countries on productivity and on patent applications in research- (“high-skill”) 
and non-research-intensive (“low-skill”) technology fields. Labour regulation as measured either 
by an index of employment protection legislation or by union density indeed turns out to be 
positively related to low-skilled labour productivity and to patenting in low-skill technologies, and 
negatively to high-skill productivity and patenting. We share with Alesina et al. (2015) the 
underlying idea that wages by skill level affect innovation, but in contrast to them, we establish 
empirically the labour-saving nature of our innovation measure rather than simply assuming it. 

3. Empirical framework and estimation methods 

This section first outlines the cost share approach to measuring the bias of technological 
change using a translog cost function. In subsection 3.2, we derive the factor bias for our 
baseline specification where the level of technology at each point in time is proxied with a time 
trend. This implies that technological change is exogenous and takes place at a constant annual 
rate. Subsection 3.3 then introduces our preferred specification, which models the level of 
technology using both stocks of knowledge in energy- and labour-saving fields and a time trend 
capturing knowledge in remaining fields. Expressions for the factor bias of both representations 
of technology are derived. This sets the stage for the models of induced technological change 
presented in subsection 3.4, which relate technological change in energy- and labour-saving 
fields to policy variables that could shift the bias away from saving labour towards saving 
energy. Modelling the determinants of energy- and labour-saving technological change in this 
way allows us to endogenise both its rate and its direction regarding energy and labour. 
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3.1 The translog cost share approach to measuring the bias 

Let output be produced with a production function 𝑌 = 𝑓(𝐱,𝑇), where x is the vector of inputs 
and T represents an index of technology. Assuming perfect competition in the factor markets, a 
profit-maximising firm produces a given level of output with the choice of inputs that leads to the 
minimum possible cost of production. Hence dual to the production function, there exists a 
minimum cost function given by 

  𝐶 = 𝐶 (p,𝑌,𝑇) =  ∑ 𝑝𝑖𝑖 𝑥𝑖∗,  (4) 

where p is the vector of input prices, 𝑥𝑖∗ are the optimal factor input demands resulting from cost 
minimisation, and in our case, 𝑖 = {𝐾, 𝐿𝐿 , 𝐿𝑀 , 𝐿𝐻 ,𝐸,𝑀} representing capital, low-, medium- and 
high-skilled labour, energy and non-energy intermediates (materials for short). Production and 
cost functions are equivalent in that all the information contained in one can be recovered from 
the other. We assume constant returns to scale, in which case the cost function can be shown 
to take the form 𝐶 = 𝑝𝑌(p, 𝑇) ∙ 𝑌, where 𝑝𝑌(p, 𝑇) is the so-called output price function giving the 
price of one unit of output. Therefore, equation (4) becomes 

  𝑝𝑌(p, 𝑇) ∙ 𝑌 =  ∑ 𝑝𝑖𝑥𝑖∗𝑖 , (5) 

so that the sum of the value of inputs exhausts the value of output 𝑝𝑌 ∙ 𝑌. 

The factor input shares in total cost are obtained from the cost function by making use of 
Shephard’s lemma, according to which the optimal input demands 𝑥𝑖∗ are derived by 
differentiating the cost function with respect to each input price. Given constant returns to scale, 
this implies 𝑥𝑖∗ = 𝑌 ∙ 𝜕𝑝𝑌(p,𝑇) 𝜕𝑝𝑖⁄ . The factor cost shares can then be obtained as the 
elasticities of the output price function with respect to the factor price (Jorgenson, 2000): 

  𝑠𝑖 = (𝑝𝑖𝑥𝑖∗) (𝑝𝑌𝑌)⁄ = 𝜕 𝑙𝑛 𝑝𝑌(𝒑,𝑇) 𝜕 𝑙𝑛 𝑝𝑖⁄ . (6) 

We assume a price function 𝑝𝑌(p,𝑇) of the translog form, a very flexible functional form that 
approximates any twice-differentiable function to the second order and allows for a variety of 
substitution patterns between inputs (Christensen, Jorgenson and Lau, 1973). It consists of the 
sum of the levels and interactions of the logs of all elements in the function, that is in our case: 

 

  𝑙𝑛 𝑝𝑌 = 𝛼0 + ∑ 𝛼𝑖 𝑙𝑛 𝑝𝑖𝑖  +  𝛼𝑡𝑇 +  1
2

 ∑ 𝛾𝑖𝑗 𝑙𝑛 𝑝𝑖 ∙ 𝑙𝑛 𝑝𝑗𝑖,𝑗 +  1
2

 𝛼𝑡𝑡𝑇2 + ∑ 𝜌𝑡𝑖𝑖 𝑙𝑛 𝑝𝑖 ∙ 𝑇,  (7) 

where 𝑖, 𝑗 = {𝐾, 𝐿𝐿 , 𝐿𝑀 , 𝐿𝐻 ,𝐸,𝑀} and symmetry (𝛾𝑖𝑗 = 𝛾𝑗𝑖) is imposed. From (7), the factor cost 
share equations are derived according to (6). The output price function is assumed to be 
homogeneous of degree one in input prices, which requires imposing the following restrictions: 

  ∑ 𝛼𝑖 = 1,𝑖   ∑ ∑ 𝛾𝑖𝑗 =𝑗  ∑ 𝛾𝑖𝑗 =  ∑ 𝛾𝑖𝑗 = ∑ 𝜌𝑡𝑖 = 𝑖𝑗 0𝑖𝑖 . (8) 

These imply that the derived cost share equations sum to one, so that in estimation, one share 
equation is dropped and the input prices on the right-hand side of the five remaining ones (see 
below) are defined relative to the price of the dropped input. Without loss of generality, we 
exclude the cost share of high-skilled labour, and given the restrictions in (7), its parameters can 
be recovered from the estimates of the remaining equations. 

3.2 The bias of exogenous technological change 

In the baseline case, we assume that the index of technology T in (7) takes the form of a time 
trend t, so that technological change occurs at a constant exogenous rate. This implies the 
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following system of cost share equations, which we estimate using panel data for 25 EU 
countries over the period from 1995 to 2009: 
  𝑠𝐾,𝑐,𝑡 =  𝛼𝐾 + ∑ 𝛾𝐾𝑖ln �
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where the subscripts c and t denote countries and time respectively. 𝜂𝑖,𝑐 represents a country-
specific fixed effect and 𝜀𝑖,𝑐,𝑡 is a mean-zero error term. This system is estimated using Zellner's 
(1962) seemingly unrelated regression (SUR) estimator, which allows 𝜀𝑖,𝑐,𝑡 to be correlated 
across the five cost share equations. This is likely to be relevant for (9), given that demand for 
all factors of production is determined simultaneously by firms’ choice of the cost-minimising 
input combination producing a desired level of output. In this case, the SUR estimator leads to 
more efficient estimates compared to equation-by-equation (OLS) estimation, assuming that all 
regressors are exogenous. This last assumption may not hold in our case, since prices and 
factor demands and therefore cost shares are jointly determined by labour demand and supply. 
Hence the system in (9) is also estimated using GMM with lagged relative prices as instruments 
(in progress). Industry-level results are obtained by estimating (9) separately for each industry. 

The bias of (exogenous) technological change for each input i is derived from the cost 
share equations according to definition (2):10

  𝜕 ln 𝑠𝑖,𝑐,𝑡 𝜕𝑡⁄ = 𝜌𝑡𝑖 𝑠𝑖,𝑐,𝑡⁄  (10) 

 

which we obtain using the estimated 𝜌𝑡𝑖-coefficients in (9) together with information on 𝑠𝑖,𝑐,𝑡, the 
cost share of input i per country and time period. For high-skilled labour, 𝜌𝑡𝐿𝐻 is obtained 
residually given the restriction that the 𝜌-coefficients must sum to 0. 

As established by Binswanger (1974b), in the case of a translog cost function, Allen 
partial elasticities of factor substitution between each input pair 𝑖 ≠ 𝑗 ∈ {𝐾, 𝐿𝐿 , 𝐿𝑀 , 𝐿𝐻 ,𝐸,𝑀} can 
be computed based on the parameter estimates of 𝛾𝑖𝑗 in (9) as follows: 

  𝜎𝑖𝑗 =  𝜎𝑗𝑖 =  𝛾𝑖𝑗 𝑠𝑖𝑠𝑗⁄ + 1 (11) 

Own- and cross-price elasticities of factor demand are given by 𝜀𝑖𝑖 = 𝛾𝑖𝑖 𝑠𝑖 + 𝑠𝑖 − 1⁄  and 𝜀𝑖𝑗 =
 (𝛾𝑖𝑗 + 𝑠𝑖𝑠𝑗) 𝑠𝑖⁄ . The results of the baseline specification (9) with purely exogenous technological 
change are discussed in section 5.1. 

3.3 The bias of endogenous technological change 

Introducing endogenous technological change in energy- and labour-saving fields is a 
preliminary step to modelling policy instruments that can direct it towards saving energy and 

                                                      
10 Note that this approach also allows estimating the rate of Hicks-neutral technological change or total factor 

productivity growth, 𝛼𝑡 + 𝛼𝑡𝑡𝑡, by including the price equation (7) in the system of equations to be estimated. 
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using labour in the next subsection. Thus we extend our specification of the level of technology 
beyond a simple time trend and complement it with stocks of knowledge in energy- and labour-
saving technologies, 𝑇𝐸𝑆𝐴𝑉  and 𝑇𝐿𝑆𝐴𝑉 . The time trend t now captures any other kind of 
technology that we do not explicitly model and its rate of change remains exogenous. Overall 
therefore, we have 𝑇 = {𝑡,𝑇𝐸𝑆𝐴𝑉 ,𝑇𝐿𝑆𝐴𝑉}. The knowledge stock in technology field k is assumed to 
accumulate as a function of all current and past innovative activity, 

 �̇�𝑘 = 𝑓(𝑃𝑘 ,𝑇𝑘) (12) 

where 𝑘 = {𝐸𝑆𝐴𝑉, 𝐿𝑆𝐴𝑉} and 𝑃𝑘 denotes the flow of patent applications, our proxy for innovative 
activity. A simple example for (11) is the perpetual inventory model, according to which �̇�𝑘 =
𝑃𝑘 − 𝛿𝑇𝑘, with 𝛿 the rate of knowledge obsolescence or decay. 

The knowledge stocks enter the cost function as quasi-fixed inputs that firms take as 
given in the short run, which means that under constant returns to scale, they enter the price 
function in (7) relative to output:11
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where, as above, 𝑖, 𝑗 = {𝐾, 𝐿𝐿 , 𝐿𝑀, 𝐿𝐻 ,𝐸,𝑀} and 𝑘 =  {𝐸𝑆𝐴𝑉, 𝐿𝑆𝐴𝑉}. This price function implies the 
following system of cost share equations for our panel of 25 EU countries from 1995 to 2009: 
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𝑝𝑖
𝑝𝐿𝐻

�
𝑐,𝑡

𝑖 + 𝜌𝑡𝑀𝑡 + ∑ 𝜌𝑘𝑀ln �𝑇𝑘
𝑌
�
𝑐,𝑡−5

𝑘 + 𝜂𝑀,𝑐 + 𝜀𝑀,𝑐,𝑡, 

The baseline regression is again estimated using SUR, while GMM estimates are in progress. 
The knowledge stocks 𝑇𝑘 are lagged by several years in estimation to allow for a time lag 
between an invention and its effect on factor shares. This should also alleviate endogeneity 
concerns regarding 𝑇𝑘. The factor bias of exogenous technological change remains as in (10). 
The bias of energy- and labour-saving technological change for each input is derived similarly: 

 

  𝜕 ln 𝑠𝑖  𝜕 ln(𝑇𝐸𝑆𝐴𝑉 𝑌⁄ )⁄ = 𝜌𝐸𝑆𝐴𝑉,𝑖 𝑠𝑖⁄   and  𝜕 ln 𝑠𝑖  𝜕 ln(𝑇𝐿𝑆𝐴𝑉 𝑌⁄ )⁄ = 𝜌𝐿𝑆𝐴𝑉,𝑖 𝑠𝑖⁄ . (14) 

where country- and time subscripts are suppressed for ease of exposition. We are interested in 
the bias of  𝑇𝐸𝑆𝐴𝑉  with respect to energy and of  𝑇𝐿𝑆𝐴𝑉 with respect to low-, medium- and high-
skilled labour. Results for the bias of both exogenous and endogenous technological change 
from our preferred specification (13) are reported in section 5.2, where we establish the energy-

                                                      
11  See e.g. Kratena (2007). The aggregate stock of knowledge or level of technology can be considered as given in 

the short term assuming that the individual firm adds little to it but benefits from the spillovers it generates. For a 
similar approach to introducing a stock of energy-saving knowledge into a cost function, see Popp (2001). 
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saving nature of technological change in energy-saving fields and similarly for labour-saving 
fields. Therefore, we now turn to our models of induced innovation, which provide the framework 
for investigating policy variables that could spur more energy-saving and less labour-saving 
technological change and thereby shift its bias from energy to labour. 

3.4 Shifting the bias of technological change 

Given the accumulation equation for the knowledge stock in field k in (12), technological change 
�̇�𝑘 is a function of innovative activity 𝑃𝑘, which we proxy with the flow of patent applications. We 
specify separate models for energy- and labour-saving patents and investigate how to stimulate 
the former and attenuate the latter. The policy variables we consider are, following the literature 
on induced innovation, factor prices, which can be raised and lowered through taxation, and 
government R&D expenditures in energy- and labour-saving technologies. Two further drivers of 
innovative activity are included that both Popp (2002) and Kruse and Wetzel (2014) have shown 
to be important. The first is the patent stock that accumulates until the end of the previous 
period, 𝑇𝑘,𝑡−1, to measure the level of technological knowledge available to inventors at time t. 
The second is the total number of patent applications per country and year, 𝑃𝑐,𝑡, to control for 
country-level trends in patenting brought about, for example, by changing propensities to patent. 
All explanatory variables enter in lags to reduce endogeneity concerns. 

Hence, we postulate the following general model of innovative activity in field k and 
country c at time t: 

  𝑃𝑘,𝑐,𝑡 = 𝑓�𝑝(𝜏)𝑗,𝑐,𝑡−1,𝑅&𝐷𝑘,𝑐,𝑡−1,𝑇𝑘,𝑐,𝑡−1,𝑃𝑐,𝑡−1�  (15) 

where 𝑝(𝜏)𝑗,𝑐,𝑡−1 is the price of input j (energy or labour), which depends on the respective tax 
rate 𝜏, and 𝑅&𝐷𝑘,𝑐,𝑡−1 denotes government R&D expenditures in field k. Equation (15) implies 
that the knowledge accumulation function (12) may be rewritten as �̇�𝑘 = 𝑓 �𝑃𝑘 �𝑝(𝜏)𝑗,𝑅&𝐷𝑘� ,𝑇𝑘�. 

This formulation will be used in a subsequent deliverable to derive the impact of changes in the 
policy variables on factor demand via their impact on innovation, thereby linking the two parts of 
the analysis in this paper and quantifying the effects of shifting the bias of technological change. 

The dependent variable in (15), 𝑃𝑘,𝑐,𝑡, consists of fractional counts of patent applications 
that are either positive or zero. In this case, count data models are appropriate, among which 
the Poisson model is a common choice (Wooldridge, 2002). It implies the following exponential 
specification for the relationship in (15): 

 

  𝑃𝑘,𝑐,𝑡 = exp �𝛽𝑝𝑗ln 𝑝(𝜏)𝑗,𝑐,𝑡−1 + 𝛽𝑟&𝑑𝑘ln𝑅&𝐷𝑘,𝑐,𝑡−1 + 𝛽𝑇𝑘ln𝑇𝑘,𝑐,𝑡−1 + 𝛽𝑃ln𝑃𝑐,𝑡−1 + 𝜇𝑘,𝑐 + 𝜆𝑘,𝑡�+ 𝜈𝑘,𝑐,𝑡   (16) 

where 𝜇𝑘,𝑐 and 𝜆𝑘,𝑡 are country- and period-specific fixed effects and 𝜈𝑘,𝑐,𝑡 is a mean-zero error 
term. The exponential functional form ensures that the values of 𝑃𝑘,𝑐,𝑡 predicted by the model 
are non-negative. Poisson regression assumes that the conditional variance of the process in 
(16) equals the conditional mean, while in practice the variance for count data is often larger 
(overdispersion). This is also what our estimates suggest, so we report results from a negative 
binomial model, a standard generalisation of the Poisson model that allows for overdispersion. 

Since the previous period’s knowledge stock 𝑇𝑘,𝑐,𝑡−1 contains lagged values of the 
dependent variable, correlation between it and the unobserved country-specific fixed effects  
𝜇𝑘,𝑐 leads to inconsistent estimates. To counter this, Blundell, Griffith and Windmeijer (2002) 
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propose the so-called pre-sample mean estimator for dynamic count data models. It relies on 
the availability of observations on the dependent variable prior to the estimation sample period, 
which is satisfied in our case. Implementing the estimator involves including the log of the 
country-specific time average of these pre-sample observations on the right-hand side of (16) to 
proxy for 𝜇𝑘,𝑐. This additional regressor takes the form ln𝑃�𝑘,𝑐,𝑝 = ln�(1 𝑇𝑃⁄ )∑ 𝑃𝑘,𝑐,0−𝑟

𝑇𝑃−1
𝑟=0 �, where 

𝑇𝑃 denotes the number of pre-sample observations available. The underlying assumptions for 
the procedure to be valid are that the pre-sample mean is correlated with the dependent 
variable 𝑃𝑘,𝑐,𝑡 but not with the error term 𝜈𝑘,𝑐,𝑡 and that it captures (much of) the unobserved 
country-specific time-invariant shocks to patenting that 𝜇𝑘,𝑐 represents. 

4. Data and variables 

This study employs three sets of data. First, we compute the factor cost shares and prices in 
specifications (9) and (13) using data from the World Input-Output Database (WIOD), which 
provides industry-level data for the EU countries from 1995 onwards. Second, data on patent 
applications by technology field, which enter equation (16) and from which we construct the 
patent stocks in (13), are taken from the patent databases of the OECD. Third, data on taxes 
and government R&D in (16) are drawn from Eurostat and the OECD. Table I in the Appendix 
provides a list of the main data sources. 

Overall, our analysis covers 25 EU member states - the EU-27 excluding Romania and 
Bulgaria - from 1995 to 2009. The factor bias of technological change is measured both at the 
level of countries as well as industries, which are classified according to NACE revision 1.1. Of 
the original 35 industries available in the WIOD, four are dropped due to missing data.12 Thus 
the panel dataset employed to estimate factor biases is balanced. The induced innovation 
equations are estimated only at the country level due to data availability on the policy variables 
and because patents are more easily assigned to countries than to industries. While the patent 
data cover the EU-25 from 1980 onwards, government R&D is less consistently available, so 
the resulting panel dataset is unbalanced.13

4.1 Factor cost shares and prices 

 

The factor cost shares are constructed according to equation (6), that is, by dividing the nominal 
input values 𝑝𝑖𝑥𝑖 through by nominal gross output 𝑝𝑌𝑌. For this purpose, we take from the 
Socio-Economic Accounts (SEA) of the WIOD the series on nominal gross output, capital 
compensation (𝑝𝐾𝐾) and labour compensation. Combining the latter with the shares of low-, 
medium- and high-skilled workers in total labour compensation yields compensation by skill 
group (𝑝𝐿𝐿𝐿𝐿 , 𝑝𝐿𝑚𝐿𝑀 and 𝑝𝐿𝐻𝐿𝐻), where skill type reflects the level of educational attainment 
according to the ISCED classification.14

                                                      
12  These are leather products and footwear (NACE 1.1 sector 19); coke, refined petroleum and nuclear fuel (23); water 

transport (61); and private households with employed persons (P). The industries are listed in Appendix 

 To derive the nominal value of energy intermediates 

Table II. 
13  There are no data for Cyprus, Latvia, Lithuania and Malta as well as missing values for the remaining countries. 
14  Low-skilled workers are those who have completed at most ISCED levels 1 and 2, medium-skilled workers have 

completed at most levels 3 and 4 and high-skilled workers at most levels 5 and 6. 
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𝑝𝐸𝐸, we combine data on gross energy use in terajoule, available by energy commodity in the 
Environmental Accounts (EA) of the WIOD, with information on industry energy prices by energy 
commodity from the International Energy Agency (IEA)’s Energy Prices and Taxes Statistics 
database. The energy commodities entering 𝐸 are coal and oil and their derivatives, gas, 
electricity and heat products, but not renewables like biomass, solar, geothermal, hydroelectric 
or wind energy, whose energy flow does not have a price. Non-energy intermediate inputs (or 
materials) 𝑝𝑀𝑀 are computed by subtracting 𝑝𝐸𝐸 from the nominal value of total intermediate 
inputs, available in the SEA. 

The WIOD is also the primary source of data on prices. From the SEA, we take the price 
level of gross output 𝑝𝑌 as well as the information required to construct the prices of low-, 
medium- and high-skilled labour (𝑝𝐿𝐿 , 𝑝𝐿𝑚 and 𝑝𝐿𝐻) as hourly labour compensation by skill type. 
The price of energy intermediates comes from the IEA as described above, and the price of 
non-energy material inputs 𝑝𝑀 is obtained using data from the World Input-Output Tables 
(WIOT).15 The price of capital is computed as the user cost of capital according to  𝑝𝐾 =  𝑝𝐼(𝑟 +
𝛿), where 𝑝𝐼 is the price level of gross fixed capital formation from the SEA, 𝑟 is the real rate of 
return on capital and 𝛿 is the depreciation rate of the capital stock.16

For the analysis at the country level, we aggregate the industry-level input shares derived 
from the WIOD by simply summing the nominal values of inputs and output over industries for 
each country and year. The price indices are aggregated using a Divisia index, so that for 
example the price of energy for country c at time t is given by ln�𝑝𝐸 ,𝑐,𝑡� = ∑ (𝑝𝐸𝐸)𝑠,𝑡

(𝑝𝐸𝐸)𝑡𝑠 ln(𝑝𝐸,𝑠,𝑡), 

where s denotes sector or industry and the weights are the industry shares in the country-level 
nominal value of energy input. Summary statistics are contained in 

 All prices are in index form 
with 1995=1. 

Table III in the Appendix. 

Figure 1 and Figure 2 depict the average annual rates of change in factor cost shares and 
relative prices for the EU-25 countries, which serves to gain some indication of the factor bias of 
(exogenous) technological change. Following the definition in equation (2), a decline in the cost 
share of an input whose price remains relatively constant would be suggestive of a factor-saving 
bias. This is the case for medium-skilled labour in several countries (Austria, Denmark, Ireland 
and Poland). For the remaining countries, both relative price and factor share of medium-skilled 
labour change over our sample period, and the direction of change is rather heterogeneous. 
Inspection of country patterns reveals a relationship with levels of development and structural 
change: in general, the share of medium-skilled labour declined in the more advanced countries 
from Western and Northern Europe, while it increased in countries from Southern and Eastern 
Europe, often from low initial levels compared to low-skilled labour (not shown; examples 
include Greece, Portugal, Spain, Italy). 

                                                      
15  The WIOT are available at current as well as previous years’ prices in the WIOD. Kratena and Wüger (2012) 

describe how this dataset allows for calculating the prices of all intermediate deliveries in the dimension (users and 
countries)*(users and countries). 

16  𝑟 is derived as the interest rate on treasury bills in the secondary market (from the IMF) deflated by the gross output 
price level 𝑝𝑌. To compute 𝛿, we use information on asset-specific depreciation rates and the industry-specific asset 
composition of the capital stock, both from EU KLEMS. 
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Meanwhile, low-skilled labour has been in retreat almost everywhere, with a decline in its 
cost share of 3.25% on average across countries and time. Its relative price also fell, but by less 
(on average by 2.7% per year). In contrast, there is not a single country in our sample that has 
not seen its share of high-skilled labour increase (at a given relative price), indicating that 
exogenous technological change has been biased towards high-skilled labour. Finally, the cost 
share of energy increased by more than its relative price on average, while the cost share of 
capital declined by considerably less.17

Figure 1 Average annual rates of change in factor cost shares, 1995-2009 

 The share of non-energy intermediates, or materials for 
short, rose very slightly while their relative price declined by more than 2% annually on average 
across countries and time. The parameter estimates of the translog cost share system will 
provide a clearer picture by isolating the factor biases while holding all relative prices constant. 

 

Source: Own calculations based on WIOD (February 2012 release), IEA Energy Prices and Taxes, EU KLEMS, IMF. 

                                                      
17  The average annual increase in the cost share of energy was 1.44% compared to a price increase of 1.15%. For 

capital, the corresponding figures are -0.24% and -3.06% per year. 
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Figure 2 Average annual rates of change in relative factor prices, 1995-2009 

  

Source: Own calculations based on WIOD (February 2012 release), IEA Energy Prices and Taxes, EU KLEMS, IMF. 
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To measure innovation and the stock of knowledge in energy- and labour-saving technology 
fields, we use data on citation-weighted patent applications to the European Patent Office 
(EPO) recorded by priority date from the OECD REGPAT and Citations databases. Although 
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this property to measure innovation and knowledge stocks in energy- and labour-saving fields. 

Patent applications are weighted by the citations they receive in subsequent applications 
to increase the likelihood of capturing high-quality patents, as patent citations have been shown 
to correlate strongly with the market value of the original patent (Hall, Jaffe and Trajtenberg, 
2005). The data are fractional counts, since in the case of several applicants from different 
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countries, patents are divided equally among these to avoid double counting. We consider 
patent applications by country of residence of the applicant rather than the inventor since the 
level of technology enters as an input into production in the cost share approach outlined in 
section 3. Hence we wish to assign patents to those industries or countries where they are used 
in production, which is more closely reflected by place of residence of the applicant, who will 
hold the intellectual property over the invention after the patent is granted. For the industry-level 
analysis, patent stocks constructed at the country level are employed. While it would be 
preferable to use a concordance like Schmoch et al. (2003) to map patents by technology areas 
to industries, the latter coincide with industry of manufacture rather than industry of use of the 
technology in most available concordances. Hence we focus on the country-level results. 

To identify patent applications in energy-saving technology fields, we combine information 
from the OECD’s classification of environment-related technologies (ENV-Tech) with the World 
Intellectual Property Office’s Green Inventory, which lists so-called environmentally sound 
technologies.18

 Renewables: from the OECD classification, we use “Energy generation from renewable and 
non-fossil sources”, which includes wind, solar, geothermal, marine and hydro energy as well 
as biofuels and fuel from waste. From the WIPO Green Inventory, we use “Alternative energy 
production”, which in addition to the fields contained in the OECD classification also 
comprises natural heat and producing mechanical power from muscle energy. 

 Our aim is to select technologies with the potential to save energy input as 
defined in section 4.1, i.e. mostly from fossil sources. Thus, we combine patents in the following 
two types of technology fields: 

 Technologies that have the potential to improve energy efficiency in general: from the OECD, 
we use the fields incineration and energy recovery; technologies for improved output 
efficiency; technologies for improved input efficiency; energy storage; hydrogen technology; 
fuel cells; fuel efficiency in transportation; and energy efficiency in buildings and lighting. 
From the WIPO classification, we add the field energy conservation, which includes power 
supply circuitry and measurement of electricity consumption, among others. 

Although a patent may belong to more than one of these technology fields, we use the IPC 
codes assigned to each patent and field to ensure that the patents are counted only once when 
generating our variable on energy-saving patent applications. 

Since there are no classifications of labour-saving or -using technologies that we are 
aware of, labour-saving technologies are proxied with patent applications in ICT and advanced 
manufacturing technologies. On the one hand, this reflects findings from the literature on skill-
biased technological change, which suggests that the rise of ICT has gone hand-in-hand with 
declining employment of unskilled workers. On the other, it allows us to test whether current 
technological advances, e.g. in robotics, are as labour saving as some authors have predicted. 
ICT patents are collected using a classification developed at the OECD that comprises the 
subgroups telecommunications; consumer electronics; computers and office machinery; and 
other ICT. Advanced manufacturing technologies consist of robotics; computer-integrated 
manufacturing; machine tools; and measuring, controlling and regulating of industrial processes. 

                                                      
18  For the sources of all technology classifications, see Appendix Table I. 



 25 

 

The citation-weighted number of patent applications in ICT and advanced manufacturing is 
generated both as separate variables to investigate their effects on factor shares individually 
and as a combined variable for the analysis of induced innovation since we find that they were 
both labour saving overall. 

Figure 3 compares the time series on citation-weighted patent applications in energy- and 
labour-saving fields to the total number of applications (top line, right scale) per country. The 
number of patents in ICT and advanced manufacturing (middle line, left scale) generally 
exceeds that in energy-saving fields (bottom line, left scale), sometimes considerably so 
(Finland, France, Sweden, UK). It also tends to develop in line with the total number of 
applications over time. In several countries, energy-saving patents exhibit an upward trend 
since the early 2000s, and in Denmark, they even exceeded labour-saving patents in 2009. 

Based on the patent data, the knowledge stocks 𝑇𝐸𝑆𝐴𝑉 and 𝑇𝐿𝑆𝐴𝑉 are constructed 
according to one of two specifications consistent with the general model in (12), with which we 
experiment in estimation to establish robustness of the results. The first is the perpetual 
inventory model, which describes the period-t knowledge stock of country c in field k as 

   𝑇𝑘,𝑐,𝑡 = 𝑃𝑘,𝑐,𝑡−1 + (1 − 𝛿)𝑇𝑘,𝑐,𝑡−1  (17) 

where 𝑘 = {𝐸𝑆𝐴𝑉, 𝐿𝑆𝐴𝑉}. We assume that patent applications 𝑃𝑘 do not add to the knowledge 
stock immediately but after a time lag of one year, given that the EPO publishes the patent 
documents 18 months after application. The depreciation rate δ is set to equal 15%.19

The alternative specification for the knowledge stock we employ follows Popp (2001) in 
allowing for knowledge diffusion in addition to knowledge decay: 

 The 
initial-period knowledge stock is computed as 𝑇𝑘,𝑐,1980 =  𝑃𝑘,𝑐,1980/(𝛿 + 𝑔𝑘,𝑐), where 𝑔𝑘,𝑐 is the 
country-specific average annual growth rate of patent applications in technology field k between 
1980 and 2009. The entire available time series on patent applications is used to construct 
patent growth since the patent stock series will be sensitive to the initial knowledge stock and 
hence to a mismeasured growth rate. Given that the influence of 𝑔𝑘,𝑐 on the patent stock series 
declines over time, any measurement error associated with the initial value should be small by 
1995, when estimation of (13) begins. 

  𝑇𝑘,𝑐,𝑡 = ∑ 𝑃𝑘,𝑐,𝑡−𝑠 ∙ 𝑒−𝛿1(𝑠)(1 − 𝑒−𝛿2(𝑠))∞
𝑠=1   (18) 

where s is the number of years before the current year t going back to 1980, 𝛿1 is the rate of 
knowledge depreciation and 𝛿2 is the rate of diffusion. That is, the patent stock at time t consists 
of the weighted sum of all previous periods’ patent applications, where the overall weight of 
older patents declines over time since obsolescence reduces the knowledge stock by more than 
diffusion raises it.20

                                                      
19  A rate of knowledge obsolescence between 10% and 15% on average across technology fields and industries is 

often assumed or estimated in the literature (e.g. Park and Park, 2006). In high-tech fields, it is likely to be on the 
higher side (Roper and Hewitt-Dundas, 2011). Since all our empirical specifications contain country-specific fixed 
effects, the choice of δ should not affect the results as long as it remains relatively constant over time per country. 

 This specification also implies a time lag of one year until a patent enters 
the knowledge stock. As above, we assume a rate of decay of 15%. For the rate of diffusion, we 
assume 3% but check robustness against 0.2%, both values estimated by Popp (2001, 2002) 

20  Note that the expression involving 𝛿2 is smaller than that involving 𝛿1. 
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for energy-saving technologies in US manufacturing industries. Overall, the specification chosen 
for the knowledge stock does not make a difference to our empirical results, so in section 5.2, 
we present results based on equation (18) to allow for knowledge diffusion as well as decay. 

Figure 3 Patent applications total, labour- and energy-saving fields, 1995-2009 

 
Notes:  Figures shown are citation-weighted patent counts. 

Source:  OECD REGPAT and Citations databases, WIFO calculations based on technology classifications by OECD, 
WIPO and Centre for European Economic Research and TNO (2010, 2012). 
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4.3 Policy variables 
The prices of energy and labour that we use for 𝑝(𝜏)𝑗,𝑐,𝑡−1 in equation (16) may or may not 
already include taxes. Firms pay less energy tax than households - much less in some countries 
- so in addition to the industry energy price 𝑝𝐸 , we also include the implicit energy tax rate from 
Eurostat. This equals total energy tax revenues divided by final energy consumption and is 
measured in constant Euros per tonne of oil equivalent. On the other hand, 𝑝𝐿𝐿 , 𝑝𝐿𝑚 and 𝑝𝐿𝐻 
from the WIOD comprise wages and salaries gross of income tax as well as social security con-
tributions payable by employers. Hence we do not add an additional variable for labour taxes. 

Data on government R&D expenditures in energy-saving technology fields are taken from 
the IEA Energy Technology RD&D Statistics database. In line with the technologies chosen for 
energy-saving patents, we sum expenditures on the total public-sector RD&D budget, measured 
in constant Euros, over the following technology categories: energy efficiency, renewable 
energy sources, hydrogen and fuel cells, and other power and storage technologies. Fossil fuels 
and nuclear energy are excluded. For government R&D expenditures in ICT and advanced 
manufacturing, we use OECD data on government budget appropriations or outlays for R&D 
(GBAORD) by socioeconomic objective according to the NABS 2007 classification.21

Table IV

 Among 
these objectives, two are relevant for us: “industrial production and technology”, which relates to 
improving the manufacturing processes of industrial products and which we use to proxy R&D in 
advanced manufacturing; and “general advancement of knowledge”, under which the largest 
amounts of public ICT R&D tend to fall in the EU countries (Stancik and Rohman, 2014). We 
sum GBAORD, measured in constant Euros, in these two objectives. Summary statistics on all 
indicators that appear in equation (16) are given in  in the Appendix. 

5. Results and discussion 

5.1 The bias of exogenous technological change 

This section reports the results of estimating the system of factor cost share equations in (9) 
using SUR.22

Table 1

 Technological change is exogenous, i.e. the level of technology is represented by 
a time trend. Instead of reporting the coefficients for all variables, we focus on the factor biases 
of technological change with respect to the inputs capital, labour by skill level, energy and non-
energy materials. Since the bias calculated according to equation (10) above varies across 
countries and over time, we present the median to reduce the influence of outliers.  
shows country-level estimates for our balanced panel of 25 countries over 15 years, while Table 
2 provides a breakdown at the industry level obtained by estimating system (9) separately for 31 
industries. The figures multiplied by 100 can be interpreted as the annual percent change in 
factor cost shares due to exogenous technological change, holding relative prices constant. 
Significant factor-saving biases are highlighted in green and significant factor-using ones in red. 

                                                      
21  NABS stands for “nomenclature for the analysis and comparison of scientific programmes and budgets”. 
22 Initial results using GMM with lagged relative prices as instruments are similar albeit less significant, which is not 

uncommon with instrumental variables techniques. They are available upon request. 
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Table 1 Bias of exogenous technological change: country-level estimates of system (9) 
 

COUNTRIES 
(Median bias) 

bias_t_K 
(𝜌𝑡𝐾/𝑠𝐾) 

bias_t_LL 
(𝜌𝑡𝐿𝐿/𝑠𝐿𝐿) 

bias_t_LM 
(𝜌𝑡𝐿𝑀/𝑠𝐿𝑀) 

bias_t_LH 
(𝜌𝑡𝐿𝐻/𝑠𝐿𝐻) 

bias_t_E 
(𝜌𝑡𝐸/𝑠𝐸) 

bias_t_M 
(𝜌𝑡𝑀/𝑠𝑀) 

       

𝑇 = time trend 𝑡 
0.0018 -0.0582 -0.0100 0.0273 0.0074 0.0038 

(0.0012) (0.0032) (0.0016) (0.0025) (0.0038) (0.0007) 
 

   Country fixed-effects: Yes                Observations: 375              Average adjusted R2: 0.915 

Notes:  System (9) estimated on country-level data using seemingly unrelated regressions (SUR); estimation period 
1995-2009;  significant factor-saving biases given in green, factor-using biases in red; figures in bold font are 
significant at the 1% level, underlined figures at the 5% level, figures in italics at the 10% level; standard errors 
(in parentheses) robust to cross-equation correlation. 

Table 2 Bias of exogenous technological change: industry-level estimates of system (9) 
 

NACE 1.1 SECTORS 
(Median bias) 

bias_t_K 
(𝜌𝑡𝐾/𝑠𝐾) 

bias_t_LL 
(𝜌𝑡𝐿𝐿/𝑠𝐿𝐿) 

bias_t_LM 
(𝜌𝑡𝐿𝑀/𝑠𝐿𝑀) 

bias_t_LH 
(𝜌𝑡𝐿𝐻/𝑠𝐿𝐻) 

bias_t_E 
(𝜌𝑡𝐸/𝑠𝐸) 

bias_t_M 
(𝜌𝑡𝑀/𝑠𝑀) 

 
 

      

  Agriculture AtB -0.0050 -0.0384 -0.0036 0.0674 0.0187 0.0094 
Mining, quarrying C 0.0412 -0.0767 -0.0531 -0.0310 0.0171 -0.0022 
Food, beverages 15t16 0.0135 -0.0382 -0.0065 0.0329 0.0014 -0.0009 
Textiles 17t18 -0.0211 -0.0278 -0.0004 0.0573 0.0176 0.0028 
Wood and cork 20 -0.0113 -0.0461 -0.0011 0.0346 0.0176 0.0030 
Pulp, paper 21t22 -0.0050 -0.0437 -0.0099 0.0364 0.0104 0.0043 
Chemicals 24 0.0079 -0.0423 -0.0228 0.0220 -0.0023 0.0026 
Rubber, plastics 25 -0.0031 -0.0453 -0.0069 0.0425 0.0204 0.0029 
Non-metallic minerals 26 -0.0137 -0.0420 -0.0021 0.0446 0.0023 0.0059 
Basic metals 27t28 -0.0143 -0.0546 -0.0121 0.0390 0.0262 0.0058 
Machinery 29 -0.0031 -0.0456 0.0015 0.0467 0.0216 0.0006 
Electrical equipment 30t33 -0.0157 -0.0702 -0.0093 0.0424 0.0385 0.0067 
Transport equipment 34t35 0.0062 -0.1055 -0.0139 0.0259 -0.0080 0.0061 
Other manufacturing 36t37 0.0039 -0.0459 -0.0132 0.0388 0.0231 0.0040 
Electricity, gas, water E -0.0045 -0.0969 -0.0408 0.0125 0.0254 -0.0029 
Construction F 0.0035 -0.0370 -0.0024 0.0117 0.0102 0.0039 
Sale of motor vehicles 50 -0.0061 -0.0367 -0.0013 0.0206 0.0035 0.0080 
Wholesale trade 51 -0.0009 -0.0374 -0.0054 0.0322 0.0139 0.0047 
Retail trade 52 -0.0074 -0.0389 -0.0044 0.0335 0.0135 0.0097 
Hotels, restaurants H 0.0003 -0.0266 0.0098 0.0214 -0.0099 0.0008 
Land transport 60 -0.0059 -0.0375 -0.0154 0.0484 0.0342 0.0067 
Air transport 62 -0.0141 -0.0847 -0.0262 0.0380 0.0307 0.0100 
Other transport activ. 63 -0.0099 -0.0357 0.0016 0.0494 0.0191 0.0025 
Post, telecoms 64 -0.0086 -0.0770 -0.0340 0.0447 0.0180 0.0239 
Financial intermed. J 0.0013 -0.1535 -0.0388 0.0205 -0.0188 0.0152 
Real estate activities 70 -0.0072 -0.0075 0.0097 0.0272 0.0783 0.0142 
Other business activ. 71t74 -0.0140 -0.0403 -0.0047 0.0186 -0.0154 0.0038 
Public administration L 0.0000 -0.0678 -0.0086 0.0256 0.0034 0.0037 
Education M -0.0076 -0.0441 -0.0098 0.0073 0.0156 0.0024 
Health N 0.0001 -0.0431 -0.0099 0.0108 0.0034 0.0112 
Social, personal serv. O 0.0038 -0.0500 -0.0097 0.0198 0.0047 0.0056 
 

 
      

Country fixed-effects: Yes            Observations: 375         Average adjusted R2: 0.835 

Notes:  System (9) estimated separately for 31 NACE 1.1. industries using seemingly unrelated regressions (SUR); 
estimation period 1995-2009; significant factor-saving biases given in green, factor-using biases in red; figures 
in bold font are significant at the 1% level, underlined figures at the 5% level, figures in italics at the 10% level; 
standard errors (available upon request) robust to cross-equation correlation. 
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The most sizeable biases in Tables 1 and 2 are those with respect to labour: exogenous 
technological change was clearly low- and medium-skilled labour saving and high-skilled labour 
using, both at the aggregate country level and for individual sectors. On aggregate, holding 
relative prices constant, the cost shares of low- and medium-skilled labour declined at annual 
rates of 5.8% and 1% respectively, while that of high-skilled labour rose by 2.7% per year. 
Taken together, these figures imply an annual labour-saving bias of 4% for exogenous 
technological change. The industry-level estimates in Table 2 reveal that the low-skilled labour-
saving bias was largest in financial intermediation (15% per year) and manufacture of transport 
equipment (11%). Increases in the shares of high-skilled labour were generally larger in 
manufacturing, transport services and post and telecommunications than in other industries, 
although agriculture registered the biggest annual increase (6.7%). The medium-skilled labour-
saving biases tend to be smaller but are still substantial in mining (5.3%) and financial 
intermediation (about 4%). 

Regarding energy and non-energy intermediate inputs (materials), the results suggest 
that exogenous technological change was factor-using. The aggregate country-level biases are 
small, at 0.7% and 0.4% per year respectively, and only marginally significant in the case of 
energy. However, at the industry level, technological change was significantly energy-using in 
agriculture and mining, most manufacturing industries, transport services, and electricity, gas 
and water supply, with the energy factor share increasing by between 1% and 3% annually. The 
bias with respect to capital is insignificant at the country level. At the industry level, there are 
both significant capital-using biases (4% per year in mining) and capital-saving ones (between 
1.4 and 2% in several manufacturing industries), but many are insignificant. 

On the whole therefore, our estimates indicate that exogenous technological change for 
the EU-25 from 1995 to 2009 was skill-biased but labour saving overall, as well as energy and 
materials using. 

5.2 The bias of endogenous technological change 

In this section, we present the results of estimating system (13), where the level of technology is 
represented both by patent stocks in energy- and labour-saving fields, 𝑇𝐸𝑆𝐴𝑉  and 𝑇𝐿𝑆𝐴𝑉, as well 
as an exogenous time trend t to capture all other types of knowledge not explicitly modelled. We 
refer to the factor bias with respect to the patent stocks as the bias of endogenous technological 
change given that we model their determinants in the next section. These biases also give an 
indication of the direction of technological change regarding energy and labour in our data. 
Patent stocks in ICT and advanced manufacturing technologies are included separately to test 
their individual relationships with factor shares, and all patent stocks are lagged by five years 
(recall that they are available since 1980) to account for the fact that inventions are likely to take 
some time before affecting cost shares. Table 3 contains estimates of the median country-level 
biases computed according to equations (10) and (14). Since patents are less easy to assign to 
industries than to countries, industry-level results are relegated to Table V in the Appendix. 

The factor biases of exogenous technological change in the top third of Table 3 retain 
their signs and significance levels compared to Table 1. All significant biases decline slightly but 
not significantly so in absolute values, except for the bias with respect to energy which doubles 
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in size but is also less precisely estimated. Factor biases of endogenous technological change 
are shown in the middle and bottom thirds of the table. The estimates indicate that technological 
change as measured by the change in the ICT patent stock was medium-skilled labour saving 
and high-skilled labour using, while the bias with respect to low-skilled labour is not significantly 
different from zero. This is consistent with the findings of Michaels, Natraj and Van Reenen 
(2014) and adds to the existing empirical evidence on the skill bias of ICT. The sector-level 
results for ICT in Appendix Table V are mostly in line with this, although some heterogeneity is 
noticeable across sectors. In particular, several industries are characterised by a low-skilled 
labour-saving bias, especially in services. For the ICT-producing industries, where ICT would be 
expected to be labour-using, this can only be confirmed at the 10% significance level for highly 
skilled labour in post and telecommunications (NACE industry 64). In optical and electrical 
equipment manufacturing (30-33), the biases are correctly signed but not significant, while the 
latter also holds for industries 71-74, which contain computer services (72). The last grouping 
may be too broad to correctly capture the effect of computer services.23

Given equation (14), the factor biases of endogenous technological change have the 
interpretation of elasticities, so their size is not directly comparable to the biases of exogenous 
technological change at the top of the table. The figures for ICT imply that over our sample 
period, the cost shares of medium- and high-skilled labour respectively declined by 0.64% and 
rose by 0.34% for every 10% increase in the ICT patent stock relative to output. Since the latter 
actually grew by close to 10% per year on average, -0.64% and 0.34% are approximately the 
annual cost share changes due to technological change in ICT. These percentages are smaller 
than the corresponding biases of exogenous technological change, but for medium-skilled 
labour they are only marginally more than two standard deviations away from each other. 

 

Table 3 Bias of endogenous technological change: country-level estimates of system (13) 
 

COUNTRIES 
(Median bias) 

bias_t_K 
(𝜌𝑡𝐾/𝑠𝐾) 

bias_t_LL 
(𝜌𝑡𝐿𝐿/𝑠𝐿𝐿) 

bias_t_LM 
(𝜌𝑡𝐿𝑀/𝑠𝐿𝑀) 

bias_t_LH 
(𝜌𝑡𝐿𝐻/𝑠𝐿𝐻) 

bias_t_E 
(𝜌𝑡𝐸/𝑠𝐸) 

bias_t_M 
(𝜌𝑡𝑀/𝑠𝑀) 

       

𝑇 = time trend 𝑡 
0.0020 -0.0414 -0.0099 0.0223 0.0141 0.0036 

(0.0013) (0.0040) (0.0016) (0.0026) (0.0082) (0.0037) 
       

       

+ 𝑇𝐿𝑆𝐴𝑉 

bias_ict_LL 
(𝜌𝐼𝐶𝑇,𝐿𝐿/𝑠𝐿𝐿) 

bias_ict_LM 
(𝜌𝐼𝐶𝑇,𝐿𝑀/𝑠𝐿𝑀) 

bias_ict_LH 
(𝜌𝐼𝐶𝑇,𝐿𝐻/𝑠𝐿𝐻) 

bias_am_LL 
(𝜌𝐴𝑀,𝐿𝐿/𝑠𝐿𝐿) 

bias_am_LM 
(𝜌𝐴𝑀,𝐿𝑀/𝑠𝐿𝑀) 

bias_am_LH 
(𝜌𝐴𝑀,𝐿𝐻/𝑠𝐿𝐻) 

      

-0.0041 -0.0640 0.0341 -0.0021 0.0101 -0.0150 
(0.0086) (0.0103) (0.0156) (0.0087) (0.0060) (0.0078) 

       

       

+ 𝑇𝐸𝑆𝐴𝑉 

bias_esav_E 
(𝜌𝐸𝑆𝐴𝑉,𝐸/𝑠𝐸) Country-specific fixed effects: Yes 

Observations: 375 
Average adjusted R2: 0.937 

 

0.0020 
(0.0037) 

•  •  •  

Notes:  System (13) estimated on country-level data using seemingly unrelated regressions (SUR); estimation period 
1995-2009; significant factor-saving biases given in green, factor-using biases in red; figures in bold font are 
significant at the 1% level, underlined figures at the 5% level, figures in italics at the 10% level; standard errors 
(in parentheses) robust to cross-equation correlation. 

                                                      
23 As discussed in section 4.2, since due to data constraints we use country-level patent stocks, the sector-level 

results should not be overemphasised. 
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Technological change as measured by the change in the stock of patents in advanced 
manufacturing (“am”) technology fields was medium-skilled labour using and high-skilled labour 
saving, with no significant effect on low-skilled labour. The results therefore suggest that not 
even highly skilled labour is immune from the adverse employment effects of new technologies. 
This also holds for some individual industries, as the last three columns of Table V in the 
Appendix show.24

Figure I

 The labour-using biases in machinery manufacturing (NACE industry 29, 
which contains machine tools) and electrical and optical equipment (30-33) are consistent with 
advanced manufacturing technologies representing product innovations in these industries that 
dominate any labour-saving effects. This could be one reason why our results contrast with the 
predictions of Frey and Osborne (2013) and Brynjolfsson and McAfee (2014). Another possible 
explanation is that we are relying on the within-country variation over time to identify the 
coefficients. As  in the Appendix shows, in contrast to the ICT patent stock, the 
advanced manufacturing patent stock declines over time or remains flat in several countries, 
which could be driving its negative correlation with the high-skilled labour share. A related final 
point is that our data may be too aggregate to identify the expected effects. On the one hand, 
robotics is only a subcategory of advanced manufacturing technologies.25 On the other, our 
skills measure is based on educational attainment, so the data do not allow a detailed 
differentiation of the task content of occupations as in Frey and Osborne (2013). In general, our 
estimated biases are small and only marginally significant.26

The factor bias of technological change in energy-saving fields is not significant at the 
country level, which could be due to an amalgamation of effects in industries where energy-
saving technologies are more likely to be employed and thus have an impact with industries 
were they are less relevant. Indeed, the disaggregation to the industry level in 

 Taken together, they indicate that 
advanced manufacturing was labour saving overall. 

Table V in the 
Appendix reveals that a significant energy-saving bias exists in several energy-intensive 
industries, among them electricity, gas and water supply (NACE sector E); pulp, paper, printing 
and publishing (21-22); chemicals and chemical products (24); and two transport services 
industries (60 and 63). Since the average annual growth rate of the stock of energy-saving 
patents was close to 6% from 1995 to 2009, the estimated biases (between -0.04 and -0.09) in 
these industries imply a reduction in their energy cost shares from 0.24% to 0.54% per year. 

Finally, for use in the follow-up deliverable linking the two parts of this paper, Table VI in 
the Appendix shows the own-price elasticities of demand for all inputs. They are all negatively 
signed and of reasonable size. The elasticities of energy and labour will enter the calculations of 
the total effect of changes in the policy instruments, in particular the prices of energy and labour, 
on factor demand, including short-run substitution effects. For completeness, we also show the 
Allen partial elasticities of substitution for all inputs, computed according to equation (11). 

                                                      
24 Significant biases are highlighted for agriculture, mining, manufacturing, electricity and construction, where these 

technologies are most likely to be produced and/or used. 
25 For this reason, our results are not directly comparable to recent estimates by Graetz and Michaels (2015), who use 

data on industrial robots from the International Federation of Robotics and find a significant negative relationship 
between robots per hour worked and the share of low-skilled labour. 

26  The elasticities in Table 3 imply that the cost shares of medium- and high-skilled labour respectively rose by 0.09% 
and fell by 0.13% per year. 



 32 

 

In sum, the biases of endogenous technological change have the expected signs in the 
case of ICT and energy-saving technologies for some important industries, while the biases of 
exogenous technological change remain similar to section 5.1. Technological change in ICT 
was skill biased but labour saving overall, and the latter also holds for advanced manufacturing. 
Therefore, we use the combined series on patent applications in ICT and advanced 
manufacturing to proxy labour-saving innovation and technological change in the next section. 
Before moving on, it is worth briefly recapping the main finding of the empirical analysis so far, 
namely that technological change in the EU since 1995 has gone hand in hand with declining 
demand for low- and medium-skilled labour. Clearly, one key policy implication targeted at the 
(labour) supply side is the crucial importance of appropriate education and training measures to 
equip workers with the skills required to adapt as new technologies transform the world of work. 

5.3 Shifting the bias of technological change 

This section examines policy mechanisms that could shift the bias of technological change away 
from saving labour towards saving energy by stimulating energy-saving and attenuating labour-
saving technological change. Results for induced energy-saving innovation, i.e. equation (16) 
estimated for energy-saving technologies, are reported in Table 4. Table 5 presents results for 
innovation in ICT and advanced manufacturing technologies combined. In both cases, we start 
with the baseline specification (16) in column (i) and then carry out several robustness checks in 
the remaining columns. The results are obtained from unbalanced panels of at most 25 
countries and 14 years (due to the lagged explanatory variables) using the PSM estimator. The 
PSM terms ln𝑃�𝑘,𝑐,𝑝 consist of country-specific averages of patent applications between 1980 and 
1994 and control for unobserved fixed effects. Given the functional form of equation (16), the 
parameter estimates can be interpreted as elasticities. 

In our baseline specification for energy-saving innovation in column (i) of Table 4, of the 
three policy variables that we consider, only the implicit energy tax rate 𝜏𝐸 is statistically 
significant. Its coefficient is positive, indicating that a higher energy tax rate could stimulate 
energy-saving innovation. The estimate implies that a 10% increase in the tax is associated with 
a 2.1% increase in energy-saving patent applications. Popp (2002) finds a similarly-sized 
elasticity of US patenting with respect to the energy price, while our coefficient on the latter is 
insignificant. This should not be too much of a concern however, since the energy tax is the key 
policy lever affecting the final energy price, and our price measure excludes most energy taxes. 
In Kruse and Wetzel (2014)’s study of OECD countries, the effect of the energy price is also not 
significant when estimated over all 11 of their green energy technology fields combined, while 
the technology-specific regressions reveal substantial heterogeneity regarding its sign and 
significance across individual technologies. 

As R&D is likely to affect patenting only after some time lag, we investigate whether this 
might cause its insignificant coefficient. In column (ii), we show the results of including R&D 
lagged by two years, which does not make a difference. The same holds when using lags three 
and four instead (not shown). Our measure of government energy R&D therefore does not 
seem to be an effective way to foster energy-saving patenting, which resembles the findings of 
Popp (2002) and Kruse and Wetzel (2014). Data on government energy R&D are unavailable 
for six of the 25 EU countries we consider, so it restricts our sample quite considerably. Hence 
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in column (iii), we test the robustness of the results to excluding the R&D variable given that it is 
insignificant. The parameter estimates change somewhat in size but retain their significance 
levels. The implied effect of a 10% increase in the energy tax rate on energy patenting declines 
from 2.1% to 1.8%, but this difference is not statistically significant. 

Table 4 Induced innovation in energy-saving technologies 
 

Dependent (i) (ii) (iii) (iv) 
Variable: 𝑃𝐸𝑆𝐴𝑉,𝑐,𝑡 NegBin, PSM NegBin, PSM NegBin, PSM Poisson, PSM 
            

ln 𝑝𝐸,𝑐,𝑡−1 -0.1440  -0.1024  0.1065  0.0388  

 (0.175)  (0.171)  (0.157)  (0.145)  
ln 𝜏𝐸,𝑐,𝑡−1 0.2106 ** 0.2148 ** 0.1797 ** 0.0576  

 (0.089)  (0.010)  (0.074)  (0.081)  
ln𝑅&𝐷𝐸𝑆𝐴𝑉,𝑐,𝑡−1 0.0071      0.0543 ** 

 (0.033)      (0.024)  
ln𝑅&𝐷𝐸𝑆𝐴𝑉,𝑐,𝑡−2   -0.0026      

   (0.053)      
ln𝑇𝐸𝑆𝐴𝑉,𝑐,𝑡−1 0.9615 *** 0.9337 *** 0.6333 *** 1.4429 *** 

 (0.152)  (0.191)  (0.101)  (0.117)  
ln𝑃𝑐,𝑡−1 0.3559 *** 0.3896 *** 0.4851 *** 0.2686 *** 

 (0.083)  (0.127)  (0.055)  (0.056)  
ln𝑃�𝐸𝑆𝐴𝑉,𝑐,𝑝 -0.4212 *** -0.4100 *** -0.2261 *** -0.7308 *** 

 (0.089)  (0.098)  (0.064)  (0.081)  
             

ln𝛼 -2.5579 -2.5252 -2.3048 Deviance gof: 

 (0.198) (0.219) (0.161) 1776 (0.000) 
𝛼 0.0775 0.0800 0.0998 Pearson gof: 

 (0.015) (0.018) 0.016) 2103 (0.000) 
LR test of 𝛼 = 0 1112 (0.000) 1026 (0.000) 1403 (0.000)  

         

Time dummies Yes Yes Yes Yes 
Countries 19 19 25 19 
Observations 199 185 318 199 

Notes:  Estimates in all columns are obtained using the NB2 model (Cameron and Trivedi, 1986), a commonly 
employed version of the negative binomial model where the variance of the dependent variable is assumed to 
be a function of the mean (instead of a constant, as in NB1); Huber-White standard errors (in parentheses) 
are robust to heteroskedasticity; *** and ** indicate significance at the 1% and 5% levels respectively. 

Across columns (i) to (iii), the estimated elasticity for the stock of energy-saving patents 𝑇𝐸𝑆𝐴𝑉 is 
always positive and significant at the 1% level. A 10% increase in the knowledge stock is 
associated with an increase in energy-saving patent applications by 9.6% in our baseline 
specification in column (i), which is large and similar to the findings of Popp (2002) and Kruse 
and Wetzel (2014). The total patent count 𝑃𝑐, which controls for country-specific trends in 
patenting, is also always positive and highly significant. 

In column (iv), the baseline model is re-estimated using a Poisson instead of a negative 
binomial specification. Here, government energy R&D has a significant positive effect, while the 
energy tax rate is insignificant. However, the goodness-of-fit tests shown in the second half of 
the table strongly reject this specification. Another way to see this is from the statistics on 𝛼 in 
columns (i) to (iii). The Poisson model corresponds to 𝛼 = 0, that is, the conditional variance of 
the dependent variable equals its mean. This hypothesis is rejected everywhere. 
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Overall, the results in Table 4 indicate that a direct way for government policy to induce 
more energy-saving innovation could be to increase taxes on energy, while a more indirect one 
would be to raise the knowledge stock in energy-saving technologies available in an economy. 
The latter could be achieved with policy measures related to fostering domestic research and 
improving the framework conditions for the diffusion and absorption of new knowledge 
generated at home and abroad. 

In our baseline specification for innovation in ICT and advanced manufacturing 
technologies in column (i) of Table 5, the coefficient on the compensation of low-skilled workers 
is positive and significant at the 1% level, suggesting that higher compensation of this skill group 
acts as a spur to patenting in technologies which our results in section 5.2 suggest are labour 
saving.27

Government R&D expenditures in the NABS categories related to ICT and advanced 
manufacturing appear to be significantly negatively related to patenting in these fields. This also 
holds when using lags two, three or four of the R&D measure instead of lag 1 (not shown). The 
implied size of the effect is approximately a 1.4% reduction in patenting for every 10% increase 
in government R&D, which is not very large compared to the effect of low-skilled labour 
compensation. In column (ii), we split up 𝑅&𝐷𝐿𝑆𝐴𝑉,𝑐,𝑡−1 into its two subcomponents, R&D in 
industrial production and technology (𝑅&𝐷𝐼𝑃𝑇,𝑐,𝑡−1) and R&D in general advancement of 
knowledge (𝑅&𝐷𝐺𝐴𝐾,𝑐,𝑡−1), which according to a recent study by Stancik and Rohman (2014) is 
the NABS category under which most public ICT R&D in the EU countries tends to be 
registered. The results in column (ii) indicate that it is this category that drives the significant 
negative coefficient. One interpretation could be that government ICT R&D crowds out private 
R&D, which is also what Popp (2002) finds regarding the effect of government energy R&D on 
energy-saving patenting. In column (iii), we investigate the robustness of the results to omitting 
the insignificant variables on labour compensation for medium- and high-skilled workers. The 
general conclusions from the previous two columns carry through. 

 Hence, the compensation of low-skilled workers could be an instrument for 
government policy to attenuate labour-saving technological change. The size of the estimated 
elasticity implies that a 10% reduction in low-skilled labour compensation is associated with 
about a 5.1% decrease in patenting, which is large compared to the elasticity of energy-saving 
patenting with respect to the energy tax above. The other compensation variables are not 
statistically significant. 

In all columns, the coefficient on the stock of labour-saving patents 𝑇𝐿𝑆𝐴𝑉 is positive and 
significant at the 1% level. The estimate in column (i) suggests an 8.3% increase in patenting for 
a 10% increase in the patent stock, which rises only marginally when the insignificant 
compensation variables are dropped in column (iii). This is again a large effect, although it is 
slightly smaller than for energy-saving patents above. The coefficient on the total patent count 𝑃𝑐 
is also highly significant and positive. It is almost twice as large as in Table 4, indicating that a 
general increase in patenting at the country level is more strongly associated with an increase in 
ICT and advanced manufacturing patents than with energy-saving ones. Finally, column (iv) 

                                                      
27  This is consistent with the finding of Alesina et al. (2015) that more stringent labour market regulations that implicitly 

raise the low-skilled wage rate induce more innovation. However, their measure of innovation is patenting in “low-
skill” technologies whose labour-saving nature is only assumed and not tested. 
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shows results from a Poisson instead of a negative binomial specification. The estimated 
coefficients differ substantially from the previous columns, but as in Table 4, the goodness-of-fit 
tests strongly reject this model. 

Table 5 Induced innovation in ICT and advanced manufacturing technologies 
 

Dependent (i) (ii) (iii) (iv) 
Variable:  𝑃𝐿𝑆𝐴𝑉,𝑐,𝑡 NegBin, PSM NegBin, PSM NegBin, PSM Poisson, PSM 

     
  

  

ln 𝑝𝐿𝐻,𝑐,𝑡−1 -0.3067  -0.3255    -1.3443 *** 

 (0.391)  (0.367)    (0.420)  
ln 𝑝𝐿𝑀,𝑐,𝑡−1 0.5033  0.6231    1.0478 *** 

 (0.393)  (0.407)    (0.381)  
ln 𝑝𝐿𝐿,𝑐,𝑡−1 0.5063 *** 0.5436 *** 0.5145 *** 0.8819 *** 

 (0.187)  (0.192)  (0.166)  (0.301)  
ln𝑅&𝐷𝐿𝑆𝐴𝑉,𝑐,𝑡−1 -0.1367 **   -0.1047 ** -0.2170 *** 

 (0.055)    (0.043)  (0.052)  
ln𝑅&𝐷𝐺𝐴𝐾,𝑐,𝑡−1   -0.1451 **     
   (0.063)      
ln𝑅&𝐷𝐼𝑃𝑇,𝑐,𝑡−1   -0.0197      
   (0.036)      
ln𝑇𝐿𝑆𝐴𝑉,𝑐,𝑡−1 0.8254 *** 0.8038 *** 0.8427 *** 0.9258 *** 

 (0.089)  (0.101)  (0.087)  (0.110)  
ln𝑃𝑐,𝑡−1 0.6475 *** 0.6900 *** 0.6040 *** 0.5900 *** 

 (0.116)  (0.128)  (0.112)  (0.102)  
ln𝑃�𝐿𝑆𝐴𝑉,𝑐,𝑝 -0.3653 *** -0.3548 *** -0.3713 *** -0.3744 *** 

 (0.081)  (0.093)  (0.073)  (0.058)  
     

  
  

ln𝛼 -2.6990 -2.7711 -2.6735 Deviance gof: 

 (0.277) (0.249) (0.267) 7059 (0.000) 
𝛼 0.0672 0.0626 0.0690 Pearson gof: 

 (0.019) (0.016) (0.018) 8061 (0.000) 
LR test of 𝛼 = 0 6097 (0.000) 5864 (0.000) 7182 (0.000)  

     
  

  

Time dummies Yes Yes Yes Yes 
Countries 21 21 21 21 
Observations 244 244 244 244 

Notes:  Estimates in all columns are obtained using the NB2 model (Cameron and Trivedi, 1986), a commonly 
employed version of the negative binomial model where the variance of the dependent variable is assumed to 
be a function of the mean (instead of a constant, as in NB1); Huber-White standard errors (in parentheses) 
are robust to heteroskedasticity and serial correlation; *** and ** indicate significance at the 1% and 5% levels 
respectively. 

In sum, the results from the induced innovation regressions for ICT and advanced 
manufacturing technologies suggest that one avenue for governments to attenuate our measure 
of labour-saving technological change is through the compensation rates of low-skilled workers. 
Reducing these could make them more attractive to hire and therefore contribute to moderating 
the considerable decline in demand for their labour they experienced since 1995 according to 
our estimates in section 5.1. To maintain their wage income, the reduction in compensation 
levels from the viewpoint of employers could be achieved by lowering the social security 
contributions the latter pay for them, which together with wages and salaries constitute total 
labour compensation. 
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6. Summary and outlook 

This paper contributes to the empirical literature on measuring the factor bias of and directing 
technological change. In the first part of the analysis, we provide a comprehensive assessment 
of the bias with regard to capital, energy and non-energy intermediates as well as low-, medium- 
and high-skilled labour for 25 EU countries from 1995 to 2009. We are not aware of a similarly 
extensive Europe-wide investigation into this issue. Using the factor cost share approach, we 
measure the bias of both exogenous technological change, represented by a time trend, and of 
endogenous technological change in energy- and labour-saving fields, where the level of tech-
nology is represented by patent stocks. Here, we add to the existing literature by using patent 
stocks in ICT and advanced manufacturing as measures of labour-saving technology, which is 
supported by our empirical findings. In the second part of the analysis, we investigate policy 
instruments to redirect technological change away from saving labour towards saving energy. 
Based on the literature on induced innovation, we model energy- and labour-saving patenting as 
functions of factor prices and taxes, government R&D expenditures and lagged patent stocks. 

Our results in the first part indicate that exogenous technological change had a 
substantial labour-saving bias, especially concerning low- and medium-skilled workers, and a 
smaller energy-using bias. The overall cost share of labour declined at annual rates of 3 to 4% 
due to exogenous technological change in the specifications with and without endogenous 
technological change. Disaggregating by skill level, the decline was particularly pronounced for 
low-skilled labour, at approximately 5% per year on average between the two specifications. On 
the other hand, the cost share of high-skilled labour rose by about 2.5% per year on average, 
while that of medium-skilled labour declined by 1%. This pattern of declining shares of low- and 
medium-skilled labour coupled with a rising share of high-skilled labour suggests that 
technological change in our sample was skill biased. The average increase in the cost share of 
energy due to exogenous technological change was close to 0.8% per year. 

We also find that endogenous technological change as measured by changes in the 
patent stocks in ICT and advanced manufacturing technologies was labour saving overall in 
both cases. In particular, technological change in ICT was medium-skilled labour saving and 
high-skilled labour using, adding to the existing empirical evidence on the skill bias of ICT. The 
cost share of medium-skilled labour declined by 0.64% per year and that of high-skilled labour 
rose by 0.34%. In addition, technological change in energy-saving fields was energy saving in 
several energy-intensive industries, with annual reductions in the energy cost shares of at most 
0.54%. These estimates, although smaller than the biases of exogenous technological change, 
suggest that the link between the two parts of the empirical analysis - our assumptions on what 
constitutes energy- and labour-saving technology fields - holds at least to some extent. 

The results of the induced innovation regressions in the second part suggest that two 
policy instruments could be combined into a strategy to redirect technological change - at least 
the part that we measure and that is amenable to policy influence - towards saving more energy 
and less labour. First, a higher tax rate on energy could be implemented to stimulate energy-
saving innovation. The estimates suggest that an increase in the energy tax rate by 10% raises 
patenting in energy-saving fields by 2.1%. Second, our measure of labour-saving innovation 
could be attenuated by reducing the compensation of low-skilled workers. Here, we find that a 
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10% reduction in the compensation of low-skilled workers lowers patenting in ICT and advanced 
manufacturing by 5.1%. To maintain the wage income of low-skilled workers, the reduction in 
their compensation from the point of view of employers can be achieved by subsidising the 
social security contributions the latter pay for them. By using the revenue generated through 
higher energy taxes to make up for the shortfall in social security receipts, governments could 
thus accomplish the shift in the bias of technological change away from saving labour towards 
saving energy in a budget-neutral fashion. 

The overall aim of the suggested policy strategy is to influence the direction of 
technological change while leaving its rate unaffected. To this end, the changes in the policy 
instruments can be calibrated such that their overall impact on the rate of technological change 
is neutral. However, whether this can be achieved simultaneously with revenue neutrality, given 
the difference in the estimated innovation effects of changes in the policy instruments described 
above, depends on the energy tax base and the size of social security contributions. We will be 
better able to assess this in a follow-up paper, which links the two parts of the analysis in this 
study to derive the overall effects of changes in the energy tax rate and low-skilled labour 
compensation, via their impact on rates of energy- and labour-saving innovation, on 
employment and energy demand. For this purpose, the dynamic New Keynesian (DYNK) model 
in Kratena and Sommer (2014a) will be used, which is a complete model of the economy that 
takes into account feedback effects of policy changes throughout the economy.28 While Kratena 
and Sommer (2014a) simulate only the effect of shifting the bias of exogenous technological 
change, based on the results in this paper we will be able to quantify the effects of shifting the 
bias endogenously through changes in the policy instruments.29

The analysis in this paper has been concerned with factor demand and how to incentivise 
it to take a desired direction. Regarding labour however, the pronounced decline in demand for 
workers with low and intermediate skill levels relative to the highly skilled that emerges from our 
analysis highlights the importance of policies targeted at raising the supply of appropriately 
skilled labour. If we really are facing a “third industrial revolution” (The Economist, 2014), where 
ICT, computer algorithms and robotics combined make human labour redundant more quickly 
than in the past, it will be crucial for workers to be able to adapt equally quickly by acquiring the 
relevant skill set enabling them to take on the new roles that will certainly emerge for humans to 
fill. The policy implications are likely to differ across skill types. While for people without a 
secondary-school qualification, general upskilling is indispensable, medium-skilled workers may 
simply have to be trained to use new technologies in their jobs. In general, education and 
training policy will need to target disadvantaged groups and foster life-long learning in 
coordination with labour market policy. Policy-makers will need to be more forward-looking, 

 

                                                      
28  The DYNK model features a similar specification of the production side (firms) as this paper but also accounts for 

trade in intermediates. In addition, it contains specifications for private consumption (households), the labour market 
and the public sector. The model resembles a dual CGE model in most of its specifications but has the advantage 
that all key relationships are estimated rather than calibrated. 

29 See also Kratena and Sommer (2014b), who use the DYNK model to simulate the effects of a green tax reform, i.e. 
higher taxes on energy and concomitantly reduced social security contributions. They find that energy use declines 
and employment rises, at least in the medium term. Using our model, these measures would be expected to have 
stronger effects, due to their additional impact on the bias of technological change. 
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reform-minded and capable of overcoming vested interests than in the past. The potential pay-
offs, in terms of mitigating inequality and safeguarding political stability, are large. 

Finally, we turn to the limitations of this paper and directions for future research. First, 
establishing the robustness of the results in the first part of the analysis to addressing remaining 
endogeneity concerns is work in progress, although initial estimates indicate that the main 
results carry through. Second, regarding our approach to directing technological change away 
from saving labour, it would have been preferable to identify labour-using technologies and look 
for policy instruments to stimulate them. However, whether an invention uses or saves labour is 
generally difficult to measure. It is not as clear from patent documents as is the case for energy-
saving technologies and can often only be inferred with a time lag. Instead, using insights from 
the academic and policy literature on ICT and robotics, we were able to add to the empirical 
evidence on their labour-saving nature. Lastly, since our estimates of the factor biases of 
endogenous technological change are small compared to the biases of exogenous 
technological change, only part of the overall bias can be shifted by means of the policy 
instruments we identify in this paper. For future research, this calls for modelling other sources 
of endogenous technological change which in this study remain part of its exogenous 
component. A related more general point is that factors other than government policy 
instruments play a role in shaping the direction of technological change. For example, the 
statistical significance of the cumulated patent stock in labour- and energy-saving fields in the 
patent regressions highlights the importance of past innovative activity as well as the path-
dependent nature of technological change. 



 39 

 

References 
Acemoglu, Daron. 2002. “Directed Technical Change.” The Review of Economic Studies 69 (4): 

781–809. 
———. 2007. “Equilibrium Bias of Technology.” Econometrica 75 (5): 1371–1409. 
Acemoglu, Daron, and David Autor. 2011. “Chapter 12 - Skills, Tasks and Technologies: 

Implications for Employment and Earnings.” In Handbook of Labor Economics, edited 
by David Card and Orley Ashenfelter, Volume 4, Part B:1043–1171. Elsevier. 

Acemoglu, Daron, Philippe Aghion, Leonardo Bursztyn, and David Hemous. 2012. “The 
Environment and Directed Technical Change.” American Economic Review 102 (1): 
131–66. 

Aghion, Philippe, and Peter Howitt. 1992. “A Model of Growth Through Creative Destruction.” 
Econometrica 60 (2): 323–51. 

Ahmad, Syed. 1966. “On the Theory of Induced Invention.” The Economic Journal 76 (302): 
344–57. 

Alesina, Alberto, Michele Battisti, and Joseph Zeira. 2015. “Technology and Labor Regulations: 
Theory and Evidence.” Working Paper 20841. NBER. 

Antonucci, Tommaso, and Mario Pianta. 2002. “Employment Effects of Product and Process 
Innovation in Europe.” International Review of Applied Economics 16 (3): 295–307. 

Autor, David H, and David Dorn. 2013. “The Growth of Low-Skill Service Jobs and the 
Polarization of the US Labor Market.” American Economic Review 103 (5): 1553–97. 

Autor, David H., Lawrence F. Katz, and Alan B. Krueger. 1998. “Computing Inequality: Have 
Computers Changed the Labor Market?” The Quarterly Journal of Economics 113 (4): 
1169–1213. 

Autor, David H., Frank Levy, and Richard J. Murnane. 2003. “The Skill Content of Recent 
Technological Change: An Empirical Exploration.” The Quarterly Journal of Economics 
118 (4): 1279–1333. 

Berman, Eli, John Bound, and Zvi Griliches. 1994. “Changes in the Demand for Skilled Labor 
within U.S. Manufacturing: Evidence from the Annual Survey of Manufactures.” The 
Quarterly Journal of Economics 109 (2): 367–97. 

Binswanger, Hans P. 1974b. “A Cost Function Approach to the Measurement of Elasticities of 
Factor Demand and Elasticities of Substitution.” American Journal of Agricultural 
Economics 56 (2): 377. 

———. 1974c. “A Microeconomic Approach to Induced Innovation.” Economic Journal 84 (336): 
940–58. 

———. 1974a. “The Measurement of Technical Change Biases with Many Factors of 
Production.” American Economic Review 64 (6): 964–76. 

Blundell, Richard, Rachel Griffith, and Frank Windmeijer. 2002. “Individual Effects and 
Dynamics in Count Data Models.” Journal of Econometrics 108 (1): 113–31. 

Bogliacino, Francesco, and Mario Pianta. 2010. “Innovation and Employment: A Reinvestigation 
Using Revised Pavitt Classes.” Research Policy 39 (6): 799–809. 

Bogliacino, Francesco, Mariacristina Piva, and Marco Vivarelli. 2012. “R&D and Employment: 
An Application of the LSDVC Estimator Using European Microdata.” Economics Letters 
116 (1): 56–59. 

Brynjolfsson, Erik, and Andrew McAfee. 2014. The Second Machine Age: Work, Progress, and 
Prosperity in a Time of Brilliant Technologies. WW Norton & Company. 



 40 

 

Cameron, A., and Pravin Trivedi. 1986. “Econometric Models Based on Count Data: 
Comparisons and Applications of Some Estimators and Tests.” Journal of Applied 
Econometrics 1 (1): 29–53. 

Centre for European Economic Research, and Idea Consult. 2012. “Exchange of Good Policy 
Practices Promoting the Industrial Uptake and Deployment of Key Enabling 
Technologies.” Report for the European Commission, DG Enterprise and Industry. 
http://ec.europa.eu/enterprise/sectors/ict/files/kets/ex_of_practice_ket_final_report_en.p
df. 

Centre for European Economic Research, and TNO. 2010. “European Competitiveness in Key 
Enabling Technologies.” Background Report for European Commission, DG Enterprise. 
http://www.manufuture.org/manufacturing/wp-
content/uploads/Final__report_07.06.10_KETs_Background_Report_2010_05_28.pdf. 

Christensen, Laurits R., Dale W. Jorgenson, and Lawrence J. Lau. 1973. “Transcendental 
Logarithmic Production Frontiers.” The Review of Economics and Statistics 55 (1): 28–
45. 

Doraszelski, Ulrich, and Jaumandreu, Jordi. 2014. “Measuring the Bias of Technological 
Change.” CEPR Discussion Paper No. 10275. 

Dosi, Giovanni. 1988. “Sources, Procedures, and Microeconomic Effects of Innovation.” Journal 
of Economic Literature 26 (3): 1120–71. 

Feldmann, Horst. 2013. “Technological Unemployment in Industrial Countries.” Journal of 
Evolutionary Economics 23 (5): 1099–1126. 

Frey, Carl Benedikt, and Michael A. Osborne. 2013. “The Future of Employment: How 
Susceptible Are Jobs to Computerisation?” Oxford Martin School Working Paper. 

Gillingham, Kenneth, Richard G. Newell, and William A. Pizer. 2008. “Modeling Endogenous 
Technological Change for Climate Policy Analysis.” Energy Economics 30 (6): 2734–53. 

Goos, Maarten, Alan Manning, and Anna Salomons. 2009. “Job Polarization in Europe.” The 
American Economic Review, 58–63. 

Graetz, Georg, and Guy Michaels. 2015. “Robots at Work.” CEP Discussion Paper dp1335. 
Centre for Economic Performance, LSE. 

Hall, Bronwyn H., Adam Jaffe, and Manuel Trajtenberg. 2005. “Market Value and Patent 
Citations.” RAND Journal of Economics 36 (1): 16–38. 

Harrison, Rupert, Jordi Jaumandreu, Jacques Mairesse, and Bettina Peters. 2014. “Does 
Innovation Stimulate Employment? A Firm-Level Analysis Using Comparable Micro-
Data from Four European Countries.” International Journal of Industrial Organization 35 
(C): 29–43. 

Jin, Hui, and Dale W. Jorgenson. 2010. “Econometric Modeling of Technical Change.” Journal 
of Econometrics 157 (2): 205–19. 

John R. Hicks. 1932. The Theory of Wages. London: Macmillan. 
Jorgenson, Dale. 2000. Econometrics, Volume 1: Econometric Modeling of Producer Behavior. 

MIT Press. 
Kalt, Joseph P. 1978. “Technological Change and Factor Substitution in the United States: 

1929- 1967.” International Economic Review 19 (3): 761. 
Kratena, Kurt. 2007. “Technical Change, Investment and Energy Intensity.” Economic Systems 

Research 19 (3): 295–314. 
Kratena, Kurt, and Mark Sommer. 2014a. “Model Simulations of Resource Use Scenarios for 

Europe.” WWWforEurope Deliverable No. 5. http://www.foreurope.eu/fileadmin/ 
documents/pdf/Deliverables/WWWforEurope_DEL_no05_D205.1.pdf. 

———. 2014b. “Policy Implications of Resource Constraints on the European Economy.” 
WWWforEurope Policy Brief No. 6. http://www.foreurope.eu/fileadmin/documents/pdf/ 



 41 

 

Policybriefs/WWWforEurope_PB_no06_D205.2.pdf. 
Kratena, Kurt, and Michael Wüger. 2012. “Technological Change and Energy Demand in 

Europe.” WIFO Working Paper No. 427. Austrian Institute of Economic Research. 
Kruse, Jürgen, and Heike Wetzel. 2014. “Energy Prices, Technological Knowledge and Green 

Energy Innovation: A Dynamic Panel Analysis of Patent Counts.” EWI Working Paper 
2014-12. Energiewirtschaftliches Institut an der Universität zu Köln. 

Lanzi, Elisa, and Ian Sue Wing. 2010. “Directed Technical Change in the Energy Sector: An 
Empirical Test of Induced Directed Innovation.” Working Paper. https://www.cesifo-
group.de/portal/pls/portal/!PORTAL.wwpob_page.show?_docname=1159295.PDF. 

Machin, Stephen, and John Van Reenen. 1998. “Technology And Changes In Skill Structure: 
Evidence From Seven OECD Countries.” The Quarterly Journal of Economics 113 (4): 
1215–44. 

Mazzucato, Mariana. 2013. The Entrepreneurial State: Debunking Public Vs. Private Sector 
Myths. Anthem Press. 

McFadden, Daniel. 1963. “Constant Elasticity of Substitution Production Functions.” The Review 
of Economic Studies 30 (2): 73–83. 

Michaels, Guy, Ashwini Natraj, and John Van Reenen. 2014. “Has ICT Polarized Skill Demand? 
Evidence from Eleven Countries over Twenty-Five Years.” Review of Economics and 
Statistics 96 (1): 60–77. 

Park, Gwangman, and Yongtae Park. 2006. “On the Measurement of Patent Stocks as 
Knowledge Indicators.” Technological Forecasting and Social Change 73 (7): 793–812. 

Pianta, Mario. 2005. “Innovation and Employment.” In The Oxford Handbook of Innovation, 
edited by Jan Fagerberg, David C. Mowery, and Richard R. Nelson, 568–98. Oxford: 
Oxford University Press. 

Piva, Mariacristina, Enrico Santarelli, and Marco Vivarelli. 2005. “The Skill Bias Effect of 
Technological and Organisational Change: Evidence and Policy Implications.” Research 
Policy 34 (2): 141–57. 

Popp, David. 2001. “The Effect of New Technology on Energy Consumption.” Resource and 
Energy Economics 23 (3): 215–39. 

———. 2002. “Induced Innovation and Energy Prices.” The American Economic Review 92 (1): 
160–80. 

Popp, David, Richard G. Newell, and Adam B. Jaffe. 2010. “Chapter 21 - Energy, the 
Environment, and Technological Change.” In Handbook of the Economics of Innovation, 
edited by Bronwyn H. Hall and Nathan Rosenberg, Volume 2:873–937. Handbook of 
the Economics of Innovation, Volume 2. North-Holland. 

Romer, Paul M. 1990. “Endogenous Technological Change.” Journal of Political Economy 98 
(5): S71–102. 

Roper, Stephen, and Nola Hewitt-Dundas. 2011. “Path Dependency and Innovation - Evidence 
from Matched Patents and Innovation Panel Data.” Warwick Business School Working 
Paper No. 111. 

Sato, Hitoshi. 2013. “On Biased Technical Change: Was Technological Change in Japan 
Electricity-Saving?” Discussion paper No. 13077. Research Institute of Economy, Trade 
and Industry (RIETI). 

Sato, Ryuzo. 1970. “The Estimation of Biased Technical Progress and the Production Function.” 
International Economic Review 11 (2): 179. 

Schmoch, Ulrich, Francoise Laville, Pari Patel, and Rainer Frietsch. 2003. “Linking Technology 
Areas to Industrial Sectors.” Final Report to the European Commission, DG Research. 
ftp://ftp.cordis.europa.eu/pub/indicators/docs/ind_report_isi_ost_spru.pdf. 

Solow, Robert M. 1957. “Technical Change and the Aggregate Production Function.” The 
Review of Economics and Statistics 39 (3): 312. 



 42 

 

Stancik, Juraj, and Ibrahim Kholilul Rohman. 2014. “Public ICT R&D Funding in the European 
Union.” JRC Science and Policy Report No. 26981. Institute for Prospective 
Technological Studies, Seville. 

Stevenson, Rodney. 1980. “Measuring Technological Bias.” American Economic Review 70 (1): 
162–73. 

Sue Wing, Ian. 2006. “Representing Induced Technological Change in Models for Climate 
Policy Analysis.” Energy Economics, Modeling Technological Change in Climate Policy 
Analyses, 28 (5–6): 539–62. 

The Economist. 2014. “The Third Great Wave, Special Report: The World Economy,” October 4. 
http://www.economist.com/news/special-report/21621156-first-two-industrial-
revolutions-inflicted-plenty-pain-ultimately-benefited. 

Uzawa, Hirofumi. 1962. “Production Functions with Constant Elasticities of Substitution.” The 
Review of Economic Studies 29 (4): 291. 

Van Reenen, John. 1997. “Employment and Technological Innovation: Evidence from U.K. 
Manufacturing Firms.” Journal of Labor Economics 15 (2): 255–84. 

Verschelde, Marijn, Michel Dumont, Bruno Merlevede, and Glenn Rayp. 2014. “A Constrained 
Nonparametric Regression Analysis of Factor-Biased Technical Change and TFP 
Growth at the Firm Level.” Research Working Paper No. 266. National Bank of Belgium. 

Wooldridge, Jeffrey M. 2002. Econometric Analysis of Cross Section and Panel Data. 
Cambridge, Mass.: MIT Press. 

Zellner, Arnold. 1962. “An Efficient Method of Estimating Seemingly Unrelated Regressions and 
Tests for Aggregation Bias.” Journal of the American Statistical Association 57 (298): 
348–68. 

 

This project has received funding from the European Union’s Seventh Framework Programme 
for research, technological development and demonstration under grant agreement no. 290647. 

 



 43 

 

Appendix 

Table I Data sources 

DATASET   SOURCE 
WIOD   http://www.wiod.org/new_site/home.htm 

IEA Energy Prices and 
Taxes Statistics Database 

http://www.oecd-ilibrary.org/energy/data/end-use-prices_ene-pric-data-en  

  
OECD patent databases http://www.oecd.org/sti/inno/oecdpatentdatabases.htm  

Classifications of energy-
saving technology fields 

http://www.oecd.org/env/consumption-innovation/indicator.htm 

http://www.wipo.int/classifications/ipc/en/est/  

OECD ICT classification http://www.oecd.org/sti/inno/40807441.pdf 

Classification of advanced 
manufacturing technology 

Centre for European Economic Research, and Idea Consult. 2012. 
Exchange of Good Policy Practices Promoting the Industrial Uptake and 
Deployment of Key Enabling Technologies. Report for the European 
Commission, DG Enterprise and Industry. 
http://ec.europa.eu/enterprise/sectors/ict/files/kets/ex_of_practice_ket_final
_report_en.pdf. 

      Centre for European Economic Research, and TNO. 2010. European 
Competitiveness in Key Enabling Technologies. Background Report for 
European Commission, DG Enterprise. 
http://www.manufuture.org/manufacturing/wp-
content/uploads/Final__report_07.06.10_KETs_Background_Report_2010
_05_28.pdf. 

    
    
    
    
IEA Energy Technology 
RD&D Statistics database 

http://www.oecd-ilibrary.org/energy/data/iea-energy-technology-r-d-
statistics/rd-d-budget_data-00488-
en?isPartOf=/content/datacollection/enetech-data-en     

OECD GBAORD by NABS 
socio-economic objective 

http://stats.oecd.org/Index.aspx?DataSetCode=GBAORD_NABS2007  
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Table II NACE revision 1.1 industries in the WIOD 
NAME NACE CODE 
Agriculture, hunting, forestry and fishing AtB 
Mining and quarrying C 
Food, beverages and tobacco 15t16 
Textiles and textile products 17t18 
Leather, leather products and footwear 19 
Wood and products of wood and cork 20 
Pulp, paper, paper products; printing and publishing 21t22 
Coke, refined petroleum and nuclear fuel 23 
Chemicals and chemical products 24 
Rubber and plastics 25 
Other non-metallic mineral products 26 
Basic metals and fabricated metal products 27t28 
Machinery nec 29 
Electrical and optical equipment 30t33 
Transport equipment 34t35 
Manufacturing nec; recycling 36t37 
Electricity, gas and water supply E 
Construction F 
Sale, maintenance and repair of motor vehicles and motorcycles; retail sale of fuel 50 
Wholesale trade and commission trade, except of motor vehicles and motorcycles 51 
Retail trade, except of motor vehicles and motorcycles; repair of household goods 52 
Hotels and restaurants H 
Land transport 60 
Water transport 61 
Air transport 62 
Supporting and auxiliary transport activities; activities of travel agencies 63 
Post and telecommunications 64 
Financial intermediations J 
Real estate activities 70 
Renting of machinery and other business activities 71t74 
Public administration and defence; compulsory social security L 
Education M 
Health and social work N 
Other community, social and personal services O 
Private households with employed persons P 
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Table III Summary statistics: Translog cost share system (country level) 
                

 
Mean Std. Dev. Min Max Observations 

         Capital share (𝑠𝐾) overall 0.201 0.032 0.103 0.297  N = 375 
  between 

 
0.031 0.143 0.279 n = 25 

  within 
 

0.013 0.143 0.263 T = 15 
         Low-skilled labour share (𝑠𝐿𝐿) overall 0.062 0.045 0.004 0.214  N = 375 

 
between 

 
0.044 0.007 0.183 n = 25 

  within 
 

0.012 0.027 0.111 T = 15 
         Medium-skilled labour share overall 0.152 0.049 0.047 0.282  N = 375 
(𝑠𝐿𝑀) between 

 
0.048 0.056 0.250 n = 25 

  within 
 

0.013 0.104 0.198 T = 15 
         High-skilled labour share overall 0.075 0.022 0.024 0.132  N = 375 
(𝑠𝐿𝐻) between 

 
0.020 0.034 0.121 n = 25 

  within 
 

0.010 0.049 0.119 T = 15 
         Energy share (𝑠𝐸) overall 0.040 0.018 0.011 0.119  N = 375 
  between 

 
0.017 0.014 0.084 n = 25 

  within 
 

0.008 0.021 0.075 T = 15 
         Materials share (𝑠𝑀) overall 0.470 0.054 0.327 0.642  N = 375 
  between 

 
0.053 0.364 0.580 n = 25 

  within 
 

0.016 0.366 0.532 T = 15 
         Relative price of capital overall 0.740 0.221 0.265 1.819  N = 375 
(𝑝𝐾/𝑝𝐿𝐻) between 

 
0.153 0.442 1.120 n = 25 

  within 
 

0.163 0.383 1.752 T = 15 
         Relative low-skilled labour overall 0.760 0.213 0.295 1.761  N = 375 
compensation (𝑝𝐿𝐿/𝑝𝐿𝐻) between 

 
0.151 0.460 1.078 n = 25 

  within 
 

0.153 0.425 1.676 T = 15 
         Relative medium-skilled labour overall 1.008 0.082 0.724 1.285  N = 375 
compensation (𝑝𝐿𝑀/𝑝𝐿𝐻) between 

 
0.064 0.815 1.119 n = 25 

  within 
 

0.053 0.888 1.201 T = 15 
         Relative price of energy overall 1.075 0.376 0.425 2.656  N = 375 
(𝑝𝐸/𝑝𝐿𝐻) between 

 
0.281 0.562 1.557 n = 25 

  within 
 

0.256 0.476 2.173 T = 15 
         Relative price of materials overall 0.846 0.176 0.357 1.187  N = 375 
(𝑝𝑀/𝑝𝐿𝐻) between 

 
0.140 0.542 1.087 n = 25 

  within   0.110 0.534 1.322 T = 15 
       

ICT patent stock rel. to output overall 0.418 0.650 0 3.029  N = 375 
(𝑇𝐼𝐶𝑇 𝑌)⁄  between 

 
0.642 0.001 2.335 n = 25 

 
within 

 
0.159 -0.949 1.175 T = 15 

       

Advanced manufacturing patent  overall 0.079 0.110 0 0.477  N = 375 
stock rel. to output (𝑇𝐴𝑀 𝑌)⁄  between 

 
0.109 0.000 0.445 n = 25 

 
within 

 
0.027 -0.029 0.284 T = 15 

       

Energy-saving patent stock overall 0.104 0.138 0 0.650  N = 375 
rel. to output (𝑇𝐸𝑆𝐴𝑉 𝑌)⁄  between 

 
0.138 0.000 0.494 n = 25 

 
within 

 
0.024 0.009 0.260 T = 15 
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Table IV Summary statistics: Induced innovation equations (country level) 
         Energy-saving technologies Mean Std. Dev. Min Max Observations 
         Patent count (𝑃𝐸𝑆𝐴𝑉) overall 155.5 354.6 0 2289.1  N = 375 

 
between 

 
354.7 0.367 1727.3 n = 25 

 
within 

 
68.0 -501.8 717.3 T = 15 

         Energy price (𝑝𝐸) overall 1.656 0.744 0.874 6.194  N = 375 

 
between 

 
0.408 1.276 3.279 n = 25 

 
within 

 
0.627 -0.623 4.571 T = 15 

         Implicit energy tax rate (𝜏𝐸) overall 1.324 0.655 0.095 3.105   N = 371 

 
between 

 
0.602 0.427 2.773 n = 25 

 
within 

 
0.281 -0.158 2.507 T-bar = 14.8 

         Energy-saving govt R&D overall 64.9 70.7 0.038 403.2   N = 219 
(𝑅&𝐷𝐸𝑆𝐴𝑉) between 

 
55.5 0.488 182.6 n = 19 

 
within 

 
44.9 -52.1 342.1 T-bar = 11.5 

         Energy-saving patent stock overall 154.5 346.2 0.001 1957.1  N = 375 
(𝑇𝐸𝑆𝐴𝑉) between 

 
350.5 0.092 1645.9 n = 25 

 
within 

 
40.4 -111.5 465.7 T = 15 

         Total patent count (𝑃) overall 2425.4 5339.5 0 28947.9  N = 375 

 
between 

 
5412.4 4.833 25998.5 n = 25 

 
within 

 
559.5 -3705 5374.9 T = 15 

         Pre-sample mean (𝑃�𝐸𝑆𝐴𝑉,𝑃) overall 140.7 316.9 0 1478.3   N = 375 

 
between 

 
323.0 0 1478.3 n = 25 

 
within   0 140.7 140.7 T = 15 

                     ICT and advanced manufacturing Mean Std. Dev. Min Max Observations 
         Patent count (𝑃𝐿𝑆𝐴𝑉) overall 697.3 1428.8 0 8184.6  N = 375 

 
between 

 
1430.9 1.256 6495.2 n = 25 

 
within 

 
265.8 -1380 2386.7 T = 15 

        Low-skilled labour overall 1.167 0.491 0.623 3.870  N = 375 
compensation (𝑝𝐿𝐿) between 

 
0.409 0.737 2.463 n = 25 

 
within 

 
0.282 -0.296 2.872 T = 15 

        Medium-skilled labour overall 1.640 0.766 1.000 6.010  N = 375 
compensation (𝑝𝐿𝑀) between 

 
0.541 1.111 3.102 n = 25 

 
within 

 
0.553 -0.462 4.548 T = 15 

         High-skilled labour  overall 1.630 0.740 0.986 4.742  N = 375 
compensation (𝑝𝐿𝐻) between 

 
0.535 1.071 2.778 n = 25 

 
within 

 
0.521 -0.148 3.798 T = 15 

         Labour-saving govt R&D overall 782.7 2081.9 0.991 19627.7   N = 271 
(𝑅&𝐷𝐿𝑆𝐴𝑉) between 

 
3108.8 4.388 14497.0 n = 21 

 
within 

 
658.0 -5370.3 5913.4 T-bar = 12.9 

         Labour-saving patent stock overall 620.4 1322.8 0.001 7393.5  N = 375 
(𝑇𝐿𝑆𝐴𝑉) between 

 
1320.8 0.211 5925.5 n = 25 

 
within 

 
266.1 -1103.6 2088.3 T = 15 

         Total patent count (𝑃) overall 2425.4 5339.5 0 28947.9  N = 375 

 
between 

 
5412.4 4.833 25998.5 n = 25 

 
within 

 
559.5 -3704.7 5374.9 T = 15 

         Pre-sample mean (𝑃�𝐿𝑆𝐴𝑉,𝑃) overall 450.3 985.3 0 4377.0  N = 375 

 
between 

 
1004.3 0 4377.0 n = 25 

 
within   0 450.3 450.3 T = 15 
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Table V Bias of endogenous technological change: industry-level estimates of system (13) 
NACE 1.1 
SECTORS 

bias_t_K 
(𝜌𝑡𝐾/𝑠𝐾) 

bias_t_LL 
(𝜌𝑡𝐿𝐿/𝑠𝐿𝐿) 

bias_t_LM 
(𝜌𝑡𝐿𝑀/𝑠𝐿𝑀) 

bias_t_LH 
(𝜌𝑡𝐿𝐻/𝑠𝐿𝐻) 

bias_t_E 
(𝜌𝑡𝐸/𝑠𝐸) 

bias_t_M 
(𝜌𝑡𝑀/𝑠𝑀) 

bias_ict_LL 
(𝜌𝐼𝐶𝑇,𝐿𝐿/𝑠𝐿𝐿) 

bias_ict_LM 
(𝜌𝐼𝐶𝑇,𝐿𝑀/𝑠𝐿𝑀) 

bias_ict_LH 
(𝜌𝐼𝐶𝑇,𝐿𝐻/𝑠𝐿𝐻) 

bias_esav_E 
(𝜌𝐸𝑆𝐴𝑉,𝐸/𝑠𝐸) 

bias_am_LL 
(𝜌𝐴𝑀,𝐿𝐿/𝑠𝐿𝐿) 

bias_am_LM 
(𝜌𝐴𝑀,𝐿𝑀/𝑠𝐿𝑀) 

bias_am_LH 
(𝜌𝐴𝑀,𝐿𝐻/𝑠𝐿𝐻) 

AtB 0.0051 -0.0468 -0.0024 0.0547 0.0222 0.0071 0.0482 -0.0357 0.0085 -0.0083 -0.0037 -0.0141 -0.0776 
C 0.0413 -0.0706 -0.0568 -0.0285 0.0160 -0.0021 -0.0753 -0.0551 -0.0603 0.0511 0.1473 0.1297 0.1306 

15t16 0.0183 -0.0411 -0.0052 0.0366 0.0028 -0.0020 -0.0275 -0.0301 0.0005 -0.0266 0.0158 0.0106 -0.0265 
17t18 -0.0269 -0.0283 -0.0061 0.0529 -0.0034 0.0066 0.0624 0.0516 0.0490 0.0313 0.0151 -0.0050 -0.0475 

20 0.0075 -0.0504 -0.0034 0.0312 0.0139 0.0010 -0.0036 -0.0087 0.0106 0.0526 0.0100 0.0204 -0.0063 
21t22 -0.0063 -0.0424 -0.0082 0.0419 0.0137 0.0037 -0.0230 -0.0450 0.0230 -0.0590 0.0013 0.0183 -0.0134 

24 -0.0018 -0.0470 -0.0235 0.0312 0.0235 0.0037 -0.0612 -0.0660 0.0060 -0.0607 0.1188 0.0517 0.0027 
25 -0.0059 -0.0376 -0.0065 0.0451 0.0101 0.0032 -0.0177 -0.0321 -0.0061 0.0314 -0.0080 0.0552 0.0115 
26 -0.0126 -0.0429 -0.0043 0.0442 0.0091 0.0055 -0.0007 -0.0137 0.0152 0.0332 0.0165 0.0122 -0.0229 

27t28 -0.0094 -0.0534 -0.0133 0.0386 0.0226 0.0052 -0.0089 -0.0088 0.0300 0.0497 0.0219 0.0224 -0.0020 
29 -0.0073 -0.0523 -0.0022 0.0417 0.0226 0.0031 0.0326 -0.0074 0.0086 -0.0163 0.0662 0.0072 -0.0318 

30t33 -0.0187 -0.0696 -0.0073 0.0426 0.0346 0.0069 0.0133 0.0004 0.0171 0.1337 0.0270 0.0221 -0.0014 
34t35 0.0057 -0.0780 -0.0108 0.0255 -0.0175 0.0049 -0.0667 -0.0947 0.0021 0.0394 -0.0511 0.0211 -0.0047 
36t37 0.0033 -0.0488 -0.0160 0.0385 0.0233 0.0052 0.0024 -0.0136 0.0044 -0.0077 0.0238 0.0352 -0.0147 

E -0.0059 -0.0603 -0.0435 0.0085 0.0273 -0.0028 0.0582 -0.0635 0.0986 -0.0423 -0.0539 0.0556 -0.0197 
F 0.0074 -0.0351 -0.0032 0.0137 0.0108 0.0029 -0.0572 0.0157 0.0017 0.1039 0.0144 -0.0065 0.0259 
50 -0.0050 -0.0371 -0.0025 0.0262 0.0041 0.0075 -0.0772 0.0010 0.0159 0.0399 0.0341 0.0221 0.0096 
51 0.0071 -0.0405 -0.0076 0.0300 0.0134 0.0023 -0.0093 0.0094 0.0092 0.0330 0.0387 0.0164 -0.0057 
52 -0.0051 -0.0406 -0.0058 0.0331 0.0149 0.0100 -0.0299 0.0041 0.0065 -0.0483 0.0316 0.0149 -0.0065 
H 0.0067 -0.0260 0.0059 0.0325 -0.0171 0.0002 -0.1157 0.0315 0.0167 0.0197 -0.0027 0.0049 -0.0285 
60 -0.0030 -0.0405 -0.0181 0.0400 0.0379 0.0064 -0.0936 -0.0120 0.0341 -0.0389 -0.0156 0.0075 -0.0089 
62 -0.0123 -0.0717 -0.0310 0.0381 0.0303 0.0102 -0.0146 0.0201 0.0042 0.0474 -0.0059 -0.0070 -0.0590 
63 -0.0083 -0.0366 -0.0007 0.0401 0.0241 0.0024 -0.0337 -0.0165 0.0264 -0.0909 -0.0142 -0.0159 -0.0848 
64 -0.0078 -0.0718 -0.0353 0.0462 0.0177 0.0242 -0.1332 0.0071 0.0431 0.0548 -0.0064 0.0186 0.0260 
J -0.0009 -0.1043 -0.0383 0.0218 -0.0231 0.0159 -0.0968 0.0070 0.0507 0.0763 -0.1244 0.0104 0.0222 

70 -0.0054 -0.0017 0.0095 0.0324 0.0654 0.0089 -0.0401 -0.0580 -0.0505 0.0984 0.0537 0.0211 -0.0157 
71t74 -0.0140 -0.0393 -0.0048 0.0183 -0.0123 0.0038 -0.0163 -0.0124 -0.0185 0.1400 0.0543 0.0111 0.0048 

L 0.0008 -0.0638 -0.0085 0.0222 0.0072 0.0042 0.0659 -0.0115 0.0674 -0.0128 -0.0354 -0.0004 -0.0478 
M -0.0024 -0.0462 -0.0113 0.0067 0.0247 0.0024 0.0021 0.0348 0.0476 0.0173 0.0327 -0.0113 -0.0255 
N 0.0027 -0.0427 -0.0100 0.0096 0.0056 0.0108 0.0468 0.0025 0.0452 0.0063 0.0180 -0.0080 -0.0558 
O 0.0077 -0.0360 -0.0090 0.0192 0.0066 0.0015 0.0245 -0.0222 -0.0092 0.0316 -0.0493 0.0055 -0.0366 

Notes:  System (13) estimated separately for 31 NACE 1.1. industries using seemingly unrelated regressions (SUR); significant factor-saving biases given in green, factor-using biases 
in red; figures in bold font are significant at the 1% level, underlined figures at the 5% level, figures in italics at the 10% level; standard errors (available upon request) robust to 
cross-equation correlation. Significant factor biases of technological change in advanced manufacturing only highlighted for manufacturing industries. 
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Figure I Patent stocks in ICT and advanced manufacturing technologies, 1995-2009 

 

Notes:  Figures shown are patent stocks constructed according to equation (18). 

Source:  OECD REGPAT and Citations databases, WIFO calculations based on technology classifications by OECD 
and Centre for European Economic Research and TNO (2010, 2012). 
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Table VI Elasticities of demand and substitution derived from estimates of system (13) 
 

Own-price elasticities 
of demand 

Allen partial elasticities 
of substitution 

    

𝜀𝐾 -0.682  𝜎𝐾,𝐿𝐿 -1.518 
𝜀𝐿𝐿 -0.158  𝜎𝐾,𝐿𝑀 0.270 
𝜀𝐿𝑀 -0.271  𝜎𝐾,𝐿𝐻 0.887 
𝜀𝐿𝐻 -0.378  𝜎𝐾,𝐸 0.904 
𝜀𝐸 -0.231  𝜎𝐾,𝑀 1.343 
𝜀𝑀 -0.460  𝜎𝐿𝐿,𝐿𝑀 1.272 

  
 𝜎𝐿𝐿,𝐿𝐻 1.891 

  
 𝜎𝐿𝐿,𝐸 1.213 

  
 𝜎𝐿𝐿,𝑀 -0.571 

  
 𝜎𝐿𝑀,𝐿𝐻 -1.655 

  
 𝜎𝐿𝑀,𝐸 -1.921 

  
 𝜎𝐿𝑀,𝑀 0.678 

  
 𝜎𝐸,𝐿𝐻 -0.539 

  
 𝜎𝐸,𝑀 0.910 

 
   𝜎𝑀,𝐿𝐻 0.949 

Notes:   Values reported are medians across countries and time. Allen substitution elasticities > 0 denote substitutes 
and < 0 complements. 𝜎𝑖𝑗 =  𝜎𝑗𝑖 . 
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