
Peitz, Martin; Rady, Sven; Trepper, Piers

Working Paper

Experimentation in Two-Sided Markets

CESifo Working Paper, No. 5346

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Peitz, Martin; Rady, Sven; Trepper, Piers (2015) : Experimentation in Two-Sided
Markets, CESifo Working Paper, No. 5346, Center for Economic Studies and ifo Institute (CESifo),
Munich

This Version is available at:
https://hdl.handle.net/10419/110838

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/110838
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Experimentation in Two-Sided Markets 
 
 
 

Martin Peitz 
Sven Rady 

Piers Trepper 
 
 

CESIFO WORKING PAPER NO. 5346 
CATEGORY 11: INDUSTRIAL ORGANISATION 

MAY 2015 
 

 
 
 
 

An electronic version of the paper may be downloaded  
• from the SSRN website:              www.SSRN.com 
• from the RePEc website:              www.RePEc.org 

• from the CESifo website:           Twww.CESifo-group.org/wp T 

 
 
 

ISSN 2364-1428 

http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.de/


CESifo Working Paper No. 5346 
 
 
 

Experimentation in Two-Sided Markets 
 
 

Abstract 
 
We study optimal experimentation by a monopolistic platform in a two-sided market. The 
platform provider is uncertain about the strength of the externality each side is exerting on the 
other. Setting participation fees on both sides, it gradually learns about these externalities by 
observing actual participation levels. This provides an informational rationale for introductory 
pricing, with the platform provider charging a fee below the myopically optimal level on at least 
one side of the market. If the externality that the other side exerts is sufficiently well known and 
weaker than the externality it experiences, the platform provider extracts surplus from that side 
by charging it a fee above the myopically optimal level. This interplay between learning and 
surplus extraction is crucial to the market outcome and its dynamics. 
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1 Introduction

Many real-world markets are two-sided in the sense that potential participants care about
the number of counterparts on the other side of the market. Transactions in such markets
are often mediated through platforms.1 It is well understood that the optimal pricing
strategy of a provider of such a platform depends delicately on the precise nature and
strength of the cross-group externality each side of the market is exerting on the other.
But how should the provider set prices if it is uncertain about these externalities and
needs to estimate them from observed market outcomes?

Arguably, such uncertainty is an important feature of platform industries: a platform
provider typically cannot perfectly foresee how strongly one side reacts to the number
of users on the other side. When one side of the market are buyers and the other side
are sellers, for example, uncertainty about the externalities re�ects uncertainty about
some aspect of the buyer-seller relationship: the platform provider may be imperfectly
informed about the sellers' production function or advertising technology, or about the
buyers' demand function. In such a situation, the market outcome not only determines the
platform provider's current pro�t but also yields information about the true externalities.
To the extent that the provider can in�uence the information content of the market
outcome through its choices, it may be worth its while sacri�cing some short-term pro�t
so as to extract information that will be bene�cial in the long term.

The two-sidedness of a platform market renders this trade-o� between earning and
learning particularly interesting. To start with, changing the price on one side of the
market will alter the level of participation and its information content on both sides. Any
information extracted from market observations thus always comes as a blend of two
signals, one from each side of the market. In turn, this raises the possibility that one and
the same amount of information can be generated with very di�erent price combinations.
Is is far from clear, therefore, how a forward-looking platform provider ought to adjust
its prices relative to the myopic benchmark of current-pro�t maximization.

To shed some light on this dynamic pricing problem, we embed a standard model of
two-sided monopoly markets into a canonical Bayesian learning framework. Like Arm-
strong (2006), we focus on participation decisions, with prices taking the form of access,
membership or subscription fees.2 Like Keller and Rady (1999), we consider a continuous-
time in�nite-horizon model in which there are two possible states of the world, the demand
function on each side of the market is linear in either state, and observed demand is an
imperfect signal of the true state because of additive Brownian noise.3 The platform

1Examples include payment systems (where shoppers will want to hold a card if many merchants
accept it, while merchants will be willing to accept cards that many customers hold), game consoles
(providing a platform for players and software developers), smart phones (users, application developers),
nightclubs and matching agencies (men, women), news media (consumers, advertisers), shopping malls,
trade fairs, B2C and B2B platforms (where buyers are interested in a large variety of o�erings, and sellers
in a large number of customers).

2This framework has become the workhorse model in two-sided markets. A particular example are
trade fairs where exhibitors pay stand rental fees and visitors entrance fees. The trade fair company as
the platform provider has to decide on these prices in advance of any event; in particular, for new events
the platform may face strong uncertainty as to the the strength of cross-group external e�ects which
determine the value of interaction on each side of the platform.

3While the focus of Keller and Rady (1999) is on the e�ects of a changing state of the world on the
learning dynamics, here we assume that the state is �xed over time. In Peitz, Rady and Trepper (2011),
we also analyze a scenario in which the platform provider selects quantities and learns from prices. This
variant of the model turns out to be more tractable, but the price setting version is clearly more relevant
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provider is assumed to incur no costs, so that revenue and pro�t are synonymous.
In this framework, current revenues and the information content of observed partic-

ipation levels are both quadratic functions of the two fees. This allows us to compute
the myopic benchmark in closed form and to characterize the optimal pricing policy of a
forward-looking platform provider by means of the linear �rst-order conditions associated
with the provider's Bellman equation. A familiar advantage of our stationary continuous-
time setting is that, at any given belief about the state of the world, the provider's
incentive to deviate from the myopic benchmark is entirely captured by a single num-
ber: the shadow price of information at this belief.4 Even though in general there are
no closed-form solutions for the value function and the shadow price, we can exploit this
fact to derive qualitative predictions as to how the optimal fees will be adjusted relative
to the myopic benchmark. In geometric terms, we are tracing out the locus of tangency
points between iso-revenue and iso-information curves at the given belief; the higher is
the shadow price of information, the farther along this locus we move, attaining higher
quantities of information.

For low shadow prices of information,5 the direction of price experimentation can
be determined by a simple comparison between the slope of the iso-information curve
through the myopically optimal fees and two numbers: the common slopes of all iso-
revenue curves along a horizontal and a vertical axis through these fees, respectively. This
comparison already yields the important insight that, even if lowering either fee makes the
market outcome more informative, uncertainty about the cross-group externalities may
induce the platform provider to raise one fee above the myopic benchmark. In fact, while
the two fees can be complements with respect to the quantity of information, they are
always substitutes with respect to current revenue. A lower fee on one side of the market
then makes reducing the fee on the other side more attractive from an informational
perspective, but less attractive with respect to current revenue, and this second e�ect
may well dominate.

The main part of the paper is concerned with analytical results on optimal price
experimentation which do not rely on the shadow price of information being small. The
most tractable scenario in our model is that of symmetric externalities, meaning that in
both states of the world the externality one side exerts on the other is exactly as strong
as the converse externality. Symmetric externalities neutralize each other completely in
the sense that it becomes optimal for the platform provider to behave as if it were a
monopolist in two unrelated markets. The revenue-maximizing fees are independent of
the provider's beliefs, therefore, and there is no incentive to deviate from these fees.

The second most tractable scenario is that of one-sided externalities. This means that
side A, say, bene�ts from an increase in participation on side B, but side B does not bene�t
from increased participation on side A.6 In this scenario, the platform provider always

in applications.
4This shadow price is the product of the subjective variance of the state of the world and the second

derivative of the value function, divided by twice the interest rate. As usual in single-agent Bayesian
learning problems of this kind, a non-negative value of information translates into a value function that is
convex in beliefs, implying a non-negative shadow price of information. Another standard result is that
the shadow price decreases in the interest rate.

5The shadow price is low if the platform provider is subjectively quite certain about the true state of
the world, for example, or if the interest rate is high.

6As an example, consider readers whose utility of a magazine is independent of the amount of adver-
tising. As another example, consider a nightclub for heterosexual singles (men and women). Externalities
are one-sided if people from one group go there for the music, while people from the other group are also
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sets a fee lower than the myopic optimum on side B, and a fee higher than the myopic
optimum on side A. In fact, the only way to make the market outcome more informative
is to raise participation on side B by lowering the fee there, giving the participants on
both sides a larger surplus. As raising the fee on side A does not a�ect participation
on side B, the provider can safely extract part of the extra surplus given to side A by
charging it a fee above the myopic optimum.

The same intuition applies to the case of one-sided uncertainty where the externality
exerted by side A is perfectly known but positive. Again, the platform provider can
only increase the amount of information by lowering the fee on side B. Whether part
of the extra surplus this creates on side A is extracted through a higher fee on that side
now depends on a comparison of indirect price e�ects, however. If the responsiveness of
expected participation on side A to price changes on side B (as measured by the absolute
value of the relevant partial derivative) is higher than the responsiveness of expected
participation on side B to price changes on side A, the platform provider will again raise
the fee on side A.

Moving on two scenarios with uncertainty about both cross-group externalities, we
distinguish between ordered and mixed price e�ects. We say that price e�ects are ordered
if in one state of the world the responsiveness of expected participation on either side to
a change in either fee is always at least as high as in the other state; otherwise we say
that price e�ects are mixed. Price e�ects are ordered if the two cross-group externalities
are positively correlated across states of the world. Price e�ects are mixed when the
externalities are negatively correlated and the spread between the two possible externality
parameters on each side is of similar size.

The scenarios described so far are all limiting cases of ordered price e�ects. Applying
a standard continuity argument, we �rst show that for approximately symmetric exter-
nalities, the platform provider always sets both fees below their myopically optimal levels.
Intuitively, the direction of experimentation must be the same on both sides in this case,
and charging less than the myopic fee clearly makes the market outcome more informa-
tive. By the same continuity argument, a scenario of approximate one-sided uncertainty
in which one externality is much better known than the other can give rise to a fee above
the myopic optimum on one side of the market, with exactly the same intuition as above.

For ordered price e�ects more generally, we formulate su�cient conditions which ensure
fee adjustments of a particular sign. These conditions again have a natural interpretation
in terms of the geometry of iso-revenue and iso-information curves. They point to asym-
metries in the signal-to-noise ratios on the two sides of the market as another natural
reason for fee increases on one side. If the spread between the two possible externality
parameters is roughly the same on both sides but the level of noise is considerably smaller
on side B, for example, there is more to be learned about the true state of the world by
lowering the fee on side A. If the platform provider expects this to induce a su�ciently
large increase in the surplus given to side B, it will raise the fee on that side above the
myopically optimal level so as to capture part of the extra surplus.

It is straightforward to provide similar su�cient conditions for mixed price e�ects.
We refrain from spelling them out in this paper and instead turn to the very tractable
special case of antisymmetric externalities with the two sides being symmetric in all other
regards.7 When the provider is highly uncertain about which side exerts the stronger

interested in getting to know people of the opposite sex.
7This includes the limiting case in which the platform provider knows that only one side of the market

exerts an externality on the other, but does not know which side it is.
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externality, it charges both sides less than in the myopic benchmark; the intuition for
this �nding is the same as the one suggested for approximately symmetric externalities.
When the platform provider is fairly con�dent in knowing the side that exerts the stronger
externality, it learns most e�ectively by lowering the fee on this side; whether it is optimal
to recoup some of the surplus this creates by raising the fee on the other side then depends
on the actual strength of the externality. By continuity, these �ndings carry over to
scenarios of approximate antisymmetry.

In the absence of closed-form solutions, we resort to numerical simulations when an-
alyzing the impact of optimal experimentation on market participation, the dependence
of optimal policies on the model parameters, and dynamic implications for prices and
quantities. More precisely, we compute optimal policies in the undiscounted limit of our
model, which provides a tight upper bound on the shadow price of information and hence
corresponds to maximal experimentation. It is well known that these policies can be com-
puted without solving for the value function �rst. In fact, we show that the computation
reduces to solving a quadratic equation in one unknown, albeit with coe�cients that are
too cumbersome for analytical results.

Whenever the platform provider reduces both fees below the myopically optimal level,
expected participation on both sides obviously increases whatever the true state of the
world. In scenarios where the provider sets a fee above the myopically optimal level on
one side, however, expected participation on this side may well decrease in some state.
What we see in numerical examples can be summarized as follows. Participation rises on
a given side either when the externality exerted on this side is strong (so that any fee
increase on this side is more than compensated by the concurrent fee reduction on the
other), or when this externality is weak and the platform provider believes it is weak (so
that the provider will refrain from raising the fee on this side). Participation falls on a
given side when the externality exerted on this side is weak but the platform provider
believes it is strong (and so raises the fee on this side in an attempt to capture some of
the rents created by lowering the other fee).

Holding the externalities in one state of the world �xed and changing those in the
other state so that we move from symmetric externalities to one-sided uncertainty and
eventually to antisymmetric externalities, we are gradually increasing the incentives to
experiment in the sense that the revenue-maximizing fees become more and more sensitive
to the true state of the world. In our numerical examples, this goes hand in hand with an
increase in the extent of experimentation that takes place, involving ever larger deviations
from the myopic benchmark. Changes in the model parameters can have a surprisingly
strong e�ect on the slope and curvature of the optimal pricing policies, moreover.

This great variability in the shape of optimal policy functions gives rise to rich in-
tertemporal patterns. An optimal fee can be decreasing and concave in beliefs over some
part of the unit interval, for example, and increasing and convex over another part; by
Ito's Lemma, the sign of the expected in�nitesimal change in the fee will depend on the
current belief, therefore. In addition, the sample-path properties of prices and quantities
can depend quite strongly on the true constellation of cross-group externalities. In one of
our numerical illustrations with approximately antisymmetric externalities, for example,
one of the fees is expected to rise both in the short and long run; this rise is fairly gentle
on average in one state of the world, but involves drastic adjustments in the other.

Broadly speaking, we can distinguish two di�erent regimes when it comes to price
dynamics. In the two-sided experimentation regime, consumers on both sides initially are
charged lower fees than in the myopic benchmark, whereas in the experimentation and
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exploitation regime one side initially faces a higher fee. In either regime, a price path which
starts at a lower fee and then rises more steeply on average amounts to introductory pricing
with larger initial discounts for informational reasons.8 Despite higher prices on one side
for some time, our simulations suggest that experimentation tends to raise participation
on both sides most of the time, which tends to bene�t the users of the platform. Moreover,
experimentation can lead to a non-monotonic time trend in participation on one side, with
increasing participation as beliefs move towards the middle of the unit interval where
uncertainty is most pronounced, and declining participation as the platform provider
becomes more con�dent of the true state of the world.

The remainder of the paper is structured as follows. Section 2 reviews the related
literature. Section 3 presents the model, Section 4 considers the benchmark of myopic
behaviour, and Section 5 describes the evolution of beliefs. Section 6 characterizes the
optimal pricing policy and its limit as the platform provider becomes in�nitely patient.
Section 7 presents pricing implications. Section 8 discusses expected quantities, compar-
ative statics and dynamic implications. Section 9 concludes. Auxiliary technical results
and all proofs are relegated to the appendix.

2 Related Literature

Pricing strategies in two-sided markets have received a lot of attention in industrial eco-
nomics. Seminal papers on two-sided markets are Rochet and Tirole (2003, 2006) and
Armstrong (2006). For a theoretical investigation of media platforms see, in particular,
Anderson and Coate (2005). A general model of monopoly platforms is analyzed by Nocke,
Peitz, and Stahl (2007). Weyl (2010) proposes the alternative solution concept of insulat-
ing tari�s. Empirical work includes Rysman (2004) and Kaiser and Wright (2006). For a
selective survey of this literature, see Rysman (2009); a textbook treatment can be found
in Belle�amme and Peitz (2010). None of the existing literature treats two-sided markets
in a setting of uncertainty where it is unclear how strong the relevant externalities are,
and where the platform provider might bene�t from experimenting with prices in order
to learn about the true state of the world. Our contribution is to introduce uncertainty
and learning into the set-up proposed by Armstrong (2006). This allows us to analyze
how the optimal price structure di�ers from the myopic benchmark and how it evolves
over time. Our analysis suggests that markets characterized by cross-group externalities
of uncertain size provide incentives for the experimenting platform provider to initially
lower at least one price.

We are aware of one other contribution that embeds two-sided markets in a dynamic
setting. Cabral (2011) considers a monopoly platform whose users can reassess their
participation decisions with some probability in each period. He �nds that the dynamic
model may have a unique equilibrium even when the static pricing model exhibits multiple
equilibria. He also shows that this setting can provide a dynamic foundation for the
equilibrium concept of insulating tari�s proposed by Weyl (2010).

The economics literature on optimal experimentation by a single Bayesian decision
maker starts with the work of Prescott (1972) and Rothschild (1974); a survey of this
literature can be found in Bergemann and Välimäki (2008). Our contribution here is

8An alternative explanation for introductory pricing in two-sided markets could be dynamic consumer
behavior which might make a platform provider strive to build up a critical mass. We exclude this channel
by assuming that participants can revise their participation decision in each period at no cost.
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to extend the analysis of optimal experimentation to two-sided markets and, building
upon the in�nite-horizon continuous-time model of Keller and Rady (1999), to provide a
tractable framework for it. Like in that model, the maximand in the Bellman equation is
the sum of a concave quadratic (expected current revenue) and a convex quadratic (the
shadow price of information times the quantity of information to be gathered from the
market outcome). We make the novel observation that in the absence of any restrictions
on the action space, the shadow price of information must be small enough to render the
combined quadratic strictly convex. While there exists an action that leads to a completely
uninformative market outcome, this action does not maximize expected revenues at any
belief and hence is never chosen. In contrast to the Keller-Rady model with a �xed state
of the world, learning is thus always complete in the long run.

Closely related work on dynamic pricing problems with Brownian information is due
to Bergemann and Välimäki (1997, 2002) and Bonatti (2011). These authors study the
introduction of a new product whose quality can be either high or low. Buyers and sellers
learn about it by observing a statistic that aggregates the experience of all buyers. As
the informativeness of this statistic increases with the mass of consumers who try the new
product, a positive value of information translates into an incentive to set this product's
price below the myopically optimal level. The causal chain from lower prices to higher
participation levels to more informative market outcomes is also present in our model; in
su�ciently asymmetric two-sided markets, however, it can be overturned by the incentive
to extract surplus on a side that bene�ts strongly from an experimentation-induced fee
reduction on the other side.

Like the platform provider in our model, the monopolistic seller in Bonatti (2011)
possesses multiple pricing instruments with which to pursue the con�icting goals of ex-
ploitation and exploration�one for each �type� or �group� of customers. In fact, this
seller chooses a non-linear tari� so as to screen consumers for their willingness to pay
(second-degree price discrimination); di�erent consumer groups are linked through incen-
tive compatibility constraints. In our model, by contrast, the platform can identify to
which group a consumer belongs and thus engages in group pricing (third-degree price
discrimination); the two groups are linked through the external e�ects that they exert
on each other. These e�ects are exogenous, and varying their strength allows for a rich
analysis of the e�ects of uncertainty about them on market outcomes.

3 The Model

We propose a two-sided market model following Armstrong (2006) to focus on participa-
tion decisions. For tractability reasons, we analyze a setting with linear demand functions
on both sides of the market. We refer to the two sides as A and B.

In each period, there is a continuum (of mass m) of potential participants on both
sides of the market. Potential participants are short-lived. The platform provider sets
membership fees (MA,MB), but no usage fee. Potential participants observe these fees
and then make their participation decisions. A potential participant on side i ∈ {A,B}
prefers joining the platform to the outside option if vi + eθinj − Mi > u0

i where vi is
the intrinsic platform value, eθi is a cross-group externality parameter in the state of the
world θ ∈ {0, 1},9 nj is the expected mass of participants on the other side of the market,

9The assumption that both externalities depend on the same binary state of the world is motivated
in the three examples below.
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and u0
i is the participant-speci�c valuation of the outside option which is drawn from

the uniform distribution on the interval [0,m]. For the sake of concreteness, we assume
positive intrinsic values, and non-negative externalities of strength less than 1, that is,
0 ≤ eθi < 1 for i = A,B and θ = 0, 1.10 Without loss of generality, we further assume
e0A < e1A and |e1B − e0B| ≤ e1A − e0A. Given (MA,MB), the expected masses of active
participants nA and nB in the current period are characterized by the system of linear
equations11

nA = vA + eθAnB −MA, (1)

nB = vB + eθBnA −MB. (2)

While the intrinsic values and the possible externality parameters are common knowl-
edge, the state of the world is known to market participants, but not to the platform
provider.12 Actual participation is expected participation plus some noise term that will
be speci�ed below; this noise prevents the platform provider from learning θ instantly.

To understand the assumptions on cross-group externalities, we consider a two-sided
platform which hosts buyers (side A) and sellers (side B). We postulate that buyers and
sellers cannot bypass the platform, i.e., all trade takes place on the platform. After the
participation decision, participating buyers and sellers interact, as we will specify in our
micro-foundation below. At the participation stage, the expected surplus a seller obtains
from interacting with a buyer is either e0A or e1A; the expected surplus a buyer obtains
from interacting with a seller is either e0B or e1B. In our speci�cation, the indirect utility
from cross-group externalities is linear in participation on the other side. The utility of
participants is independent of participation on the own side. In terms of the underlying
micro model of the buyer-seller interaction this means that the o�ers by sellers are totally
di�erentiated, i.e., a seller's demand for its product is independent of the pricing decisions
of all other sellers.

Two special cases lead to such a demand structure: First, suppose that consumers
have a quasi-linear utility function in the products potentially on o�er at the platform
and an outside good. Consumers view the di�erent products as equally attractive, but
independent, and thus have the same demand function D for each product.

Second, suppose that each consumer is interested in exactly one product among all the
potential products, while she does not derive any utility from all other products. At the
participation stage, consumers do not know which product they like (nor do the sellers
know this). Consumers have a quasi-linear utility function in the product they like and
an outside good. The platform operates as a matching platform and is able to perfectly
match buyers and sellers, i.e., a buyer is matched to the seller whose product she likes
whenever this product is available on the platform. If the buyer's net surplus from the
successful match is u, her expected surplus is unB.

Within this framework we provide several examples of buyer-seller interactions and
determine the values of e0A, e

1
A, e

0
B, and e1B.

10The upper bound of the strength of the externality guarantees that the equilibrium at the participa-
tion stage is unique and stable.

11Linearity obtains because of the uniform distribution of the value of the outside option. We implicitly
assume that m is su�ciently large such that nA, nB < m.

12We impose this for the sake of tractability. If side A, say, does not know the strength of the externality
it exerts on the other side either, it has to form a belief about it. This, in turn, has to be taken into
account by the platform provider who then must form a belief about the true strength of the externalities
as well as about the belief of side A. We leave the analysis of such a model for future work. In the present
set-up, only the platform provider holds beliefs and learns.
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Example 1: Suppose monopoly sellers use non-linear prices so as to extract all surplus
in each buyer-seller interaction. Suppose that all sellers use a common input with a high
or low input price which is uncertain from the viewpoint of the platform, but is privately
known to buyers and sellers. This gives rise to constant marginal costs which are either
cH or cL. In this case,

πpd(c) =

∫ ∞

c

D(P )dP and upd(c) = 0.

The values of the four parameters of our model are thus e0A = πpd(cH), e
1
A = πpd(cL),

e0B = e1B = 0.
Example 2: Consider the same setting as in Example 1, but let us postulate that each

monopoly seller sets a price P per unit of output.13 The buyer's demand function is
assumed to be log-concave where positive. Then, at the participation stage, buyers and
sellers rationally anticipate that each seller solves

max
P

(P − c)D(P ),

where c is either cH or cL. The unique pro�t-maximizing price is denoted by Pm(c). We
obtain

πm(c) = (Pm(c)− c)D(Pm(c)) and um(c) =

∫ ∞

Pm(c)

D(P )dP.

The values of the four parameters of our model are thus e0A = πm(cH), e
1
A = πm(cL),

e0B = um(cH), and e1B = um(cL).
Example 3: Instead of the platform facing uncertainty about the sellers' marginal cost,

it may face aggregate demand uncertainty. Suppose that demand is described by a state
which is either low or high, d ∈ {dL, dH}. The demand function is then written asD(P ; d).
It is assumed to satisfy D(P ; dH) > D(P ; dL) for all P with D(P ; dL) > 0. Functions
D(P ; dL) and D(P ; dH) are assumed to be log-concave where positive. The realization
of the demand state is learnt by buyers and sellers. They rationally anticipate that each
seller solves

max
P

(P − c)D(P ; d),

where d is either dH or dL. The unique pro�t-maximizing price is denoted by Pm(d). We
then have

πm(d) = (Pm(d)− c)D(Pm(d); d) and um(d) =

∫ ∞

Pm(d)

D(P ; d)dP.

The values of the four parameters of our model are thus e0A = πm(dL), e
1
A = πm(dH),

e0B = u(dL), and e1B = u(dH). While, by construction, e1A > e0A, it is not necessarily the
case that e1B > e0B. Thus, this simple example is su�ciently rich to generate positive and
negative correlation of the externality parameters across the two sides of the market.

In these examples, sellers set the product price. It is straightforward to generate addi-
tional examples where, in addition to setting price, sellers invest in advertising or product

13We implicitly assume that the platform either cannot observe the price or, if it does, cannot draw
inferences on u and π because it does not understand the buyer-seller interaction.
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quality. For instance, sellers may use advertising as a complement as in Becker and
Murphy (1993), and the platform is uncertain about the sellers' advertising technology.
Alternatively, sellers may invest in product quality, and the platform faces uncertainty
with respect to the sellers' investment cost function.

With these simple micro-foundations in place, we return to the stage at which users
make their participation decisions. As the product eθA eθB < 1, the system (1)�(2) has a
unique solution, given by

nA(MA,MB, θ) = ℓθ0 [vA −MA] + ℓθA [vB −MB], (3)

nB(MA,MB, θ) = ℓθ0 [vB −MB] + ℓθB [vA −MA], (4)

where

ℓθ0 =
1

1− eθAe
θ
B

, ℓθA =
eθA

1− eθAe
θ
B

and ℓθB =
eθB

1− eθAe
θ
B

measure the direct and indirect e�ects, respectively, of lowering MA or MB in state θ.
For reasons that will become clear very soon, we refrain from imposing a non-negativity

constraint on expected participation and interpret the system (3)�(4) as describing partic-
ipation decisions for any prices (MA,MB). In other words, we allow the platform provider
to charge arbitrarily high fees. Arbitrarily low fees are unproblematic, by contrast, since
negative fees have a natural interpretation as subsidies for participation.

In every period t ∈ [0,∞[ , the platform provider sets prices (M t
A,M

t
B) and then

observes the increments of the cumulative quantity processes N t
A and N t

B. These are
given by

dN t
A = nA(M

t
A,M

t
B, θ) dt+ σAdZ

t
A,

dN t
B = nB(M

t
A,M

t
B, θ) dt+ σBdZ

t
B,

where Zt
B and Zt

A are independent standard Brownian motions and the constants σA

and σB are positive. These equations are the continuous-time limit of the equations
∆N t

A = nA(M
t
A,M

t
B, θ)∆t + σA

√
∆t εAt and ∆N t

B = nB(M
t
A,M

t
B, θ)∆t + σB

√
∆t εBt

with t = 0,∆t, 2∆t, . . . and εit ∼ IIN(0, 1). They capture the idea that consumers make
occasional mistakes or experience taste shocks that are correlated across consumers and
independent over time, either of which are not observed by the other side. Alternatively,
these equations can be interpreted to include �noise traders� on each side of the market,
who participate or stay away for reasons unrelated to those captured in equations (1)�(2).

Working with normal noise distributions keeps the updating of the platform provider's
beliefs tractable; at the same time, their full support implies a positive probability for
observed quantity increments and cumulative quantities to be negative�even if the latter
do increase in expectation. In line with the literature,14 we accept this weakness of the
Brownian framework for the sake of tractability. This in turn is the reason why we do
not insist on expected quantity increments being non-negative at each instant.15

The platform provider's revenue increment from fees (M t
A,M

t
B) is

dRt = M t
A dN t

A +M t
B dN t

B

= M t
A

[
nA(M

t
A,M

t
B, θ) dt+ σAdZ

t
A

]
+M t

B

[
nB(M

t
A,M

t
B, θ) dt+ σBdZ

t
B

]
.

14For instance, Jovanovic (1979), Felli and Harris (1996), Moscarini (2005), Sannikov (2008), Prat and
Jovanovic (2014) and Papageorgiou (2014) specify cumulative output with additive Brownian noise.

15That said, expected participation will turn out to be non-negative at the optimal fees if the platform
provider is su�ciently impatient or very certain of the true state, or if the two sides of the market are
not too asymmetric.
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We normalize platform costs to zero and denote the probability that the platform provider
initially assigns to state θ = 1 by p0, assuming that this prior belief is non-degenerate, i.e.,
0 < p0 < 1. Hence, the platform provider's total expected pro�ts (expressed in per-period
terms) are

Ep0

[∫ ∞

0

re−rtdRt

]
,

where r > 0 is the discount rate. By the martingale property of the stochastic integral
with respect to Brownian motion, this expectation reduces to

Ep0

[∫ ∞

0

re−rt
{
M t

A nA(M
t
A,M

t
B, θ) +M t

B nB(M
t
A,M

t
B, θ)

}
dt

]
.

Let pt be the subjective probability that the platform provider assigns to state θ = 1
at time t. Invoking the law of iterated expectations, we can rewrite total expected pro�ts
as

Ep0

[∫ ∞

0

re−rtR(M t
A,M

t
B, pt) dt

]
(5)

where
R(MA,MB, p) = MA E

p [nA(MA,MB, θ)] +MB Ep [nB(MA,MB, θ)] (6)

is the expected current revenue from charging the fees (MA,MB) given the belief p.

4 The Myopic Benchmark

If the platform provider were myopic (corresponding to r = ∞), it would maximize
expected current revenue at each instant. Under our parameter restrictions, this revenue
is strictly concave in (MA,MB), so the myopically optimal fees,

(Mµ
A(p),M

µ
B(p)) = arg max

MA,MB

R(MA,MB, p),

are uniquely determined by the (linear) �rst-order conditions.
To compute these fees, we write the expected quantities appearing on the right-hand

side of (6) as

Ep [nA(MA,MB, θ)] = ℓ0(p)[vA −MA] + ℓA(p)[vB −MB],

Ep [nB(MA,MB, θ)] = ℓ0(p)[vB −MB] + ℓB(p)[vA −MA],

where
ℓi(p) = pℓ1i + (1− p)ℓ0i (i = 0, A,B)

measures the expected direct and indirect e�ect, respectively, of lowering MA or MB given
the belief p. We note that 0 ≤ ℓi(p) < ℓ0(p) for i = A,B and all p. In the following, it
will be convenient to write ℓAB(p) =

1
2
[ℓA(p) + ℓB(p)].

With the dependence on the belief p suppressed, the expected current revenue associ-
ated with the fees (MA,MB) now becomes

[ℓ0vA + ℓAvB]MA + [ℓ0vB + ℓBvA]MB − ℓ0M
2
A − 2ℓABMAMB − ℓ0M

2
B,
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and the �rst-order conditions yield the myopically optimal fees

Mµ
A = vA − 2(ℓ20 − ℓABℓA)vA − ℓ0(ℓA − ℓB)vB

4(ℓ20 − ℓ2AB)
, (7)

Mµ
B = vB − 2(ℓ20 − ℓABℓB)vB − ℓ0(ℓB − ℓA)vA

4(ℓ20 − ℓ2AB)
. (8)

As is well known from the literature on two-sided markets, the myopically optimal fee
on one side of the market depends on market characteristics on both sides. Independent
of the values of the externality parameters e0A, e

1
A, e

0
B, e

1
B, the fee on either side is always

increasing in the intrinsic platform value on that same side. Whether or not the fee on
one side is increasing in the intrinsic platform value on the other side depends on the
relative strength of the cross-group externalities on both sides. To be precise, the fee Mµ

A

is increasing in vB if and only if ℓA − ℓB > 0. Broadly speaking, when the externality
side A is experiencing is higher than the one it is exerting, it bene�ts from the higher
attractiveness of the platform for participants on side B as the intrinsic platform value
vB rises, and can thus be charged a higher price; in this sense, side A `subsidizes' side B.

Further, Mµ
A can only exceed the intrinsic platform value vA if ℓA exceeds ℓB by a

su�cient amount, and vice versa for Mµ
B and vB. Thus, at most one fee at a time can

exceed the intrinsic platform value and both fees will be lower than the respective intrinsic
platform values if the expected indirect price e�ects are equal (ℓA = ℓB) or close together.
For ℓA = ℓB, we actually have Mµ

i = vi/2 for i = A,B; i.e., symmetric expected price
e�ects completely neutralize each other so that the platform provider sets fees as if it were
a monopolist in two separate markets.

The level curves of R in (MA,MB)-space are concentric ellipses; the farther away such
an iso-revenue curve lies from the myopically optimal pair of fees (Mµ

A,M
µ
B), the lower is

the expected revenue. Further details on the function R can be found in Appendix A.1.
For future reference, we denote the myopically optimal revenue by

Rµ(p) = max
MA,MB

R(MA,MB, p) = R(Mµ
A(p),M

µ
B(p), p),

and note that, as the upper envelope of linear functions (one for each �xed pair of fees),
Rµ is convex.

5 The Evolution of Beliefs

The platform provider revises its beliefs over time. We de�ne

S(MA,MB) =

[
nA(MA,MB, 1)− nA(MA,MB, 0)

σA

]2
+

[
nB(MA,MB, 1)− nB(MA,MB, 0)

σB

]2
.

As the sum of squares of linear functions, S is convex.

Lemma 1 The platform provider's beliefs evolve according to

dpt ∼ N
(
0, p2t (1− pt)

2S(M t
A,M

t
B) dt

)
. (9)

Any pricing policy for which S(M t
A,M

t
B) is bounded away from 0 induces complete learning

in the long run: as t → ∞ the belief pt almost surely converges to 1 if the true state of
the world is (e1A, e

1
B), and to 0 otherwise.
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In the expression for the in�nitesimal variance of the change in beliefs, S(M t
A,M

t
B)

measures the information content of the demand observations obtained after setting prices
(it is the sum of the squared signal-to-noise ratios of these observations).16 The more
informative the observations are, the more strongly the beliefs react to them. If the
information content is bounded away from zero, the continuous accrual of information
ensures that the truth is learnt eventually. In particular, this is the case for the myopically
optimal pricing policy.17 We shall see shortly that an optimal policy generates no less
information than the myopic one, and hence gives rise to complete learning as well.

An explicit expression for the function S and a more detailed discussion of its properties
can be found in Appendix A.2. Here, we just note that for e1B ̸= e0B, the function S is
strictly convex, and the level curves of S in (MA,MB)-space are concentric ellipses. For
e1B = e0B, the iso-information curves are parallel straight lines. The farther away an
iso-information curve lies from the uninformative pair of fees (vA, vB), the higher is the
amount of information generated by the respective fee combinations.

6 The Optimal Pricing Strategy

In view of the objective function (5) and the law of motion (9), standard arguments yield
the following Bellman equation for the platform provider's value function, v:

v(p) = max
MA,MB

{
R(MA,MB, p) +

p2(1− p)2

2r
S(MA,MB) v

′′(p)

}
. (10)

Arguing exactly as in Keller and Rady (1997, Appendices A-C), one shows that v is convex
and twice continuously di�erentiable with p2(1− p)2v′′(p) → 0 as p → 0 or 1; moreover, v
is the only continuous real-valued function on [0, 1] that solves (10) on ]0, 1[ and coincides
with the myopically optimal revenue Rµ on {0, 1}.

We can interpret the second term of the maximand in the Bellman equation as the value
of information, given by the product of the (non-negative) shadow price of information,

V (p) =
p2(1− p)2

2r
v′′(p),

and the quantity of information, S(MA,MB). When V = 0, the value of information is
zero, and the platform provider chooses the myopically optimal prices. When V > 0, the
platform provider experiments, i.e., deviates from the myopic strategy so as to increase the
information content of its demand observations. As a consequence, any optimal pricing
policy has S(M t

A,M
t
B) bounded away from 0 and thus yields complete learning in the long

run by Lemma 1.
The maximand in (10) is the sum of two quadratic functions, one of them strictly

concave (expected current revenue), the other convex (value of information). As the
value function is bounded, and as fees are unbounded above and below, the shadow price

16If the platform provider were uncertain about the intrinsic platform values (vA, vB) instead of the
externalities (eA, eB), the quantity of information would be independent of the fees charged. The platform
provider would then trivially always set the myopically optimal fees.

17(Mµ
A(p),M

µ
B(p)) ̸= (vA, vB) for all p because the latter fees generate an expected current revenue of

zero and marginally lowering one fee would improve upon that.
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of information must be small enough for the combined quadratic to be bounded above
and hence concave.18 In fact, we can prove strict concavity.

Lemma 2 Evaluated at the platform provider's value function, the maximand in the Bell-
man equation (10) is strictly concave in the fees (MA,MB).

The optimal fees (M∗
A(p),M

∗
B(p)) are thus fully characterized by the (linear) �rst-order

conditions for the maximization problem in (10). Explicit representations of these fees
in terms of the model parameters, the shadow price of information and the myopically
optimal fees are given in Appendix A.3.

These algebraic expressions are closely linked to the geometry of iso-revenue and iso-
information curves. To see this, it is useful to think of the platform provider as following
a two stage-procedure. At the �rst stage, it determines the combination of fees that
maximizes the quantity of information subject to the constraint that a certain current
expected revenue be achieved. This amounts to identifying the points of tangency between
iso-information and iso-revenue curves in the (MA,MB)-plane; their locus is a curve that
can be parameterized by the shadow price of information, starting at the myopically
optimal fees for V = 0 and moving away from the the myopic optimum as V increases.
At the second stage, the provider chooses a point on this locus; it is at this stage that the
precise value of V comes into play.

To understand the direction in which this locus leaves the myopic optimum, it is
instructive to study the explicit expressions in Appendix A.3 for V close to zero. They
show that the di�erences M∗

A −Mµ
A and M∗

B −Mµ
B are of the same sign as ℓ0S

µ
A − ℓABS

µ
B

and ℓ0S
µ
B − ℓABS

µ
A, respectively, where Sµ

A and Sµ
B are the partial derivatives of S at the

myopically optimal fees. For concreteness, assume that both are negative, so that lowering
either fee increases the information content of observed participation. For small shadow
prices of information, we then have M∗

A < Mµ
A if −Sµ

A/S
µ
B < −ℓAB/ℓ0, and M∗

B < Mµ
B if

−Sµ
A/S

µ
B > −ℓ0/ℓAB. While −Sµ

A/S
µ
B is the slope of the iso-information curve through

the myopically optimal fees, a simple computation reveals that all iso-revenue curves have
slope −ℓAB/ℓ0 when MA = Mµ

A, and slope −ℓ0/ℓAB when MB = Mµ
B (see Appendix A.1).

If −Sµ
A/S

µ
B < −ℓAB/ℓ0, therefore, the iso-revenue curve through a point (Mµ

A,MB) in a
neighbourhood of the myopic optimum is steeper than the iso-revenue curve through this
point, so the platform provider can raise both the expected revenue and the information
content of observed participation by reducing MA. Similarly, if −Sµ

A/S
µ
B > −ℓ0/ℓAB,

then the iso-revenue curve through a point (MA,M
µ
B) in a neighbourhood of the myopic

optimum is �atter than the iso-revenue curve through this point, and the platform provider
can increase both revenue and information by reducing MB. We know from Section 4 that
−ℓ0/ℓAB < −1 < −ℓAB/ℓ0. At small shadow prices of information, it is thus optimal to
set both fees below their myopically optimal levels when −ℓ0/ℓAB < −Sµ

A/S
µ
B < −ℓAB/ℓ0.

When −Sµ
A/S

µ
B < −ℓ0/ℓAB or −Sµ

A/S
µ
B > −ℓAB/ℓ0, however, it is optimal to set one fee

above the myopic optimum. Figure 1 illustrates the three scenarios that can arise this
way.

Thus, even if lowering either fee increases the quantity of information, the uncertainty
about the externalities between the two sides of the market may induce a learning platform

18If we had imposed a non-negativity constraint on the expected quantities (3)�(4), the situation would
be more complicated. Given the smaller choice set, the shadow price of information would be higher. The
combined quadratic could then possess a saddle-point and be strictly increasing towards the boundaries
of the set of �admissible� fee combinations.
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- MA

6

MB

(a) −Sµ
A

Sµ
B
< − ℓ0

ℓAB
:

•

◦

(b) − ℓ0
ℓAB

< −Sµ
A

Sµ
B
< − ℓAB

ℓ0
:

•

◦

(c) − ℓAB
ℓ0

< −Sµ
A

Sµ
B
:

•

◦

Figure 1: Directions of experimentation for small shadow prices of information
and negative partial derivatives of the quantity of information at the myopic
optimum. The point marked with a dot indicates the myopically optimal
fees (Mµ

A,M
µ
B), the solid curve is the iso-revenue curve corresponding to 99%

of the maximal expected revenue Rµ, and the slopes of the two dashed lines
through the myopic optimum are−ℓAB/ℓ0 and−ℓ0/ℓAB, respectively. The four
dotted curves are iso-information curves: one through the myopic optimum,
two through the points of intersection of the iso-revenue curve with the lines
MA = Mµ

A and MB = Mµ
B, and one tangential to the iso-revenue curve. The

point of tangency is marked with a circle. Parameter values: vA = vB = σA =
σB = 1, e0A = 0.1 and e1A = 0.9; (a) e0B = 0.95, e1B = 0.2 and p = 0.15; (b)
e0B = 0.2, e1B = 0.7 and p = 0.5; (c) e0B = 0.1, e1B = 0.2 and p = 0.75.

provider to raise one fee. In fact, a lower fee on one side of the market makes reducing
the fee on the other side more attractive from an informational perspective (the cross-
partial derivative of the quantity of information with respect to prices is positive for the
parameters underlying Figure 1), but less attractive as far as expected current revenue is
concerned (its cross-partial derivative is always negative). The second e�ect dominates in
Figures 1(a) and 1(c).19

For shadow prices V further away from zero, the expressions for the optimal fees are
harder to analyze, but we shall see in the following section that they nevertheless allow us
to investigate (and explain in economic terms) the directions of optimal experimentation
without precise knowledge of the value function, simply treating V as a parameter.

As to the possible extent of optimal experimentation, we can provide a tight upper
bound on the shadow price of information. For this purpose, we write the Bellman

19 Of course, if either Sµ
A or Sµ

B is positive, the directions of experimentation at small shadow prices of
information are unambiguous: if Sµ

A > 0, then MA > Mµ
A and MB < Mµ

B ; if S
µ
B > 0, these inequalities

are reversed. In either case, the tangency between the iso-revenue and iso-information curves occurs at
a point where both curves are upward sloping. A positive Sµ

A arises for example when vA = 1, vB = 3,
σA = 2, σB = 1, e0A = 0.1, e1A = 0.9, e0B = 0.95, e1B = 0.2 and p = 0.85; a positive Sµ

B is obtained for the
same externality parameters when vA = vB = 1, σA = 3, σB = 1 and p = 0.15.
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equation in the form 0 = maxMA,MB
{R − v + V S} and note that the maximum remains

zero, and the set of maximizers is unchanged, when we divide the maximand by the
quantity of information, S.20 Re-arranging then yields

V (p) = min
MA,MB

v(p)−R(MA,MB, p)

S(MA,MB)
. (11)

Arguing as in Keller and Rady (1997, Theorem 5.2 and Appendix E.1), one shows that
the value v(p) is decreasing in r at all p in the open unit interval, and that it converges
to the ex ante full-information pay-o�

R(p) = pRµ(1) + (1− p)Rµ(0)

as r ↓ 0. This in turn means that the shadow price of information V (p) increases mono-
tonically to

V (p) = min
MA,MB

R(p)−R(MA,MB, p)

S(MA,MB)
(12)

as the platform provider becomes more and more patient. Intuitively speaking, the lower
the platform provider's discount rate, the greater is its incentive to deviate from the
myopic optimum. The shadow price of information, as a measure of this incentive, is thus
maximal for r = 0; for any positive discount rate, we have 0 ≤ V < V on the open unit
interval.

The transformed Bellman equation (11) further implies that for r ↓ 0, the optimal fees
(M∗

A(p),M
∗
B(p)) converge to

(MA(p),MB(p)) = arg min
MA,MB

R(p)−R(MA,MB, p)

S(MA,MB)
, (13)

which is the optimal policy of a platform provider maximizing its undiscounted transient
payo�, that is, total expected revenue net of the full-information payo� that it will obtain
in the long run; see Bergemann and Välimäki (1997) or Bolton and Harris (2000) for details
on this performance criterion. We will refer to (MA,MB) as the maximal experimentation
strategy, re�ecting the fact that these fees mark the largest deviation from the myopic
optimum.

Besides its important role in delineating the possible range of experimentation, the
maximal experimentation strategy has the great advantage of being algebraically com-
putable. In the discounted problem, computing the maximum in the Bellman equation
(10) yields a second-order ordinary di�erential equation for v that generally is cubic in
v′′; see expression (A.7) in Appendix A.3. Alternatively, equation (11) expresses v′′ di-
rectly as a non-linear function of p and v. Irrespective of the representation one uses, the
di�erential equation has no explicit solution, so one must rely on numerical techniques
to compute the value function and trace out the optimal fees as functions of p alone. By
contrast, the optimal policy in the undiscounted limit can be computed as the solution
to the pointwise optimization problem in (13) which does not involve the value function.
Appendix A.4 shows how to reduce this problem to solving a quadratic equation in one
variable. The coe�cients of this equation are too unwieldy, however, to allow for analytic
results.

20As the pair of fees (MA,MB) = (vA, vB) is clearly suboptimal (yielding zero revenue and zero
information), the function S is indeed positive on the relevant domain.
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7 Pricing Implications

Our next aim is to provide results on optimal price experimentation which do not require
the shadow price of information to be small in the sense of the local analysis performed
in the previous section. As these results depend crucially on the precise nature of the
externalities which the two sides of the market exert on each other, we are lead to consider
a number of di�erent scenarios, starting with the most tractable ones.

7.1 Symmetric Externalities

When the externality that side A exerts on side B is exactly as strong as the converse
externality in either state of the world, then the myopic pricing strategy is optimal. In fact,
for (e0A, e

1
A) = (e0B, e

1
B), we have Mµ

A ≡ vA/2 and Mµ
B ≡ vB/2 by (7)�(8), so information

about the true state of the world is clearly worthless and there is no incentive to deviate
from the myopic optimum.

Proposition 1 For (e1B, e
0
B) = (e1A, e

0
A), the platform provider always sets the myopically

optimal fees (vA/2, vB/2).

The case of symmetric externalities is actually the only one in which the myopically
optimal revenue Rµ is linear in beliefs. In all other cases, this function is strictly convex,
and so is the value function v, implying a positive shadow price of information.

7.2 One-Sided Externalities

The second most tractable scenario in our model is the one where e1B = e0B = 0, so
side B does not bene�t from an increase in participation on side A. Participation on
side B is then independent of the fee MA, and the platform provider can only increase
the information content of observed quantities by varying MB. The direction of optimal
experimentation is obvious in this case: the only way to render observed participation on
side A more informative about the externality parameter eθA is to raise participation on
side B, i.e., to reduce MB.

Proposition 2 For e1B = e0B = 0, the platform provider always sets a fee lower than the
myopic optimum on side B, and a fee higher than the myopic optimum on side A.

The intuition behind this result is straightforward. Lowering the fee on side B not
only makes the participation observed on side A more informative, but also gives the
participants on that side a larger surplus. As raising the fee on side A does not a�ect
participation on side B, the provider can safely extract part of the extra surplus given to
side A by charging it a fee above the myopic optimum.21

The maximal experimentation policy takes a particulary simple form in this case. The
minimum of [R(p)−R(MA,MB, p)]/(vB −MB)

2 is attained at

MA(p) =
vAvB + 2eA(p)R(p)

eA(p)vA + 2vB
,

MB(p) = vB +
v2A − 4R(p)

eA(p)vA + 2vB

21To make the connection with our earlier analysis for small shadow prices of information, note that
e1B = e0B = 0 implies Sµ

A = 0, so iso-information curves are horizontal lines and we are in the case depicted
in Figure 1(c).
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where eA(p) = pe1A + (1− p)e0A. Comparing these fees to the myopically optimal ones, we
�rst see that

MB(p)−Mµ
B(p) =

4[Rµ(p)−R(p)]

eA(p)vA + 2vB
.

As R(p) = pRµ(1)+(1−p)Rµ(0) and Rµ is strictly convex, the right-hand side is negative
for 0 < p < 1. Thus, in line with Proposition 2, the maximal experimentation policy will
indeed decrease the fee that generates information. On the other side of the market, we
�nd

MA(p)−Mµ
A(p) =

2eA(p)[R(p)−Rµ(p)]

eA(p)vA + 2vB
= −eA(p)

2
[MB(p)−Mµ

B(p)],

so for non-degenerate beliefs, there is a price increase relative to the myopic benchmark,
which is again in line with Proposition 2.

7.3 One-Sided Uncertainty

Our next step is to analyze the scenario where the externality exerted by side A is perfectly
known, but positive.

Proposition 3 Suppose e1B = e0B > 0. Relative to the myopic optimum, the platform
provider then always lowers the fee on side B, and raises the fee on side A if and only if
ℓA(p) > ℓB(p).

The intuition for this result is closely related to that for Proposition 2. When the
externality exerted by side A is known, the platform provider can only increase the amount
of information by lowering the fee on sideB. SideA then bene�ts from higher participation
on side B. When ℓA > ℓB, the price e�ect that side A is expected to have on side B is
weaker than the price e�ect in the other direction, and the platform provider can again
extract part of the additional surplus given to side A by charging this side a higher fee.

Figure 2 illustrates the two situations that can arise for a known externality parameter
eB. Iso-information curves are parallel straight lines with slope −eB. In Figure 2(a), the
locus of tangency points between iso-revenue curves and iso-information lines is an upward
sloping line � the optimal trade-o� between information and current revenue induces a
decrease in both fees. In Figure 2(b), the locus of tangency points is a downward sloping
line; here, the trade-o� between information and current revenue leads to a decrease in
MB but an increase in MA.

22

Proposition 3 implies in particular that for a known externality parameter eB < e0A,
the platform provider always sets a fee above the myopic optimum on side A, exactly as in
the case where eB = 0. For eB > e1A, it lowers both fees relative to the myopic benchmark.
For e0A < eB < e1A, �nally, it sets M

∗
A(p) > Mµ

A(p) for p above some threshold p̂.

22It is again straightforward to relate these �ndings with our earlier analysis for small shadow prices
of information. For a known externality parameter eB , we have ℓB = eBℓ0. When ℓA > ℓB, therefore,
−ℓAB/ℓ0 < −ℓB/ℓ0 = −eB = −Sµ

A/S
µ
B and we are in the case depicted in Figure 1(c). When ℓA < ℓB ,

then −ℓ0/ℓAB < −eB = −Sµ
A/S

µ
B < −ℓAB/ℓ0 and we are in the case depicted in Figure 1(b).
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(a) ℓA < ℓB:

•

(b) ℓA > ℓB:

•

Figure 2: Directions of experimentation when e1B = e0B > 0. The point marked
with a dot indicates the myopically optimal fees (Mµ

A,M
µ
B); the solid curves

are the iso-revenue curves corresponding to 99%, 95%, 90% and 85% of the
maximal expected revenue Rµ; the dotted lines are the iso-information lines
tangential to these iso-revenue curves; the dashed line is the locus of all tan-
gency points between iso-revenue curves and iso-information lines. Parameter
values: vA = vB = σA = σB = 1, e0A = 0.1, e1A = 0.9, e0B = e1B = 0.6; (a)
p = 0.2; (b) p = 0.8.

7.4 Ordered Price E�ects

We now turn to scenarios with two-sided uncertainty, meaning that e1B ̸= e0B. In these
scenarios, the platform provider can manipulate the information content of observed par-
ticipation on both sides, and can do so by varying either fee.

To make progress on this problem, we �rst restrict the model parameters in a way
that encompasses the three scenarios analyzed so far (symmetry, one-sided externalities
and one-side uncertainty) as limiting cases. We say that price e�ects are ordered if the
direct and indirect e�ects of lowering either fee are at least as strong in state θ = 1 as in
state θ = 0; otherwise we say that price e�ects are mixed. As our standing assumptions
imply ℓ1A > ℓ0A, price e�ects are ordered if and only if ℓ10 ≥ ℓ00 and ℓ1B ≥ ℓ0B. In particular,
this is the case when the externality parameters are positively correlated across states,
that is, when e1B > e0B. For e

1
B < e0B, price e�ects are ordered as long as e1B/e

0
B remains

su�ciently large (see Appendix A.2, which also establishes that ℓ1B ≥ ℓ0B automatically
implies ℓ10 > ℓ00).

23

Our �rst two results on ordered price e�ects concern situations which approximate
symmetry and one-sided uncertainty, respectively.

Proposition 4 For (e1B, e
0
B) su�ciently close to, but di�erent from, (e1A, e

0
A), the platform

provider always sets both fees below their myopically optimal levels.

23Price e�ects are ordered in Figures 1(b) and 1(c); they are mixed in Figure 1(a) and in the two
examples given in Footnote 19.
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Figure 3: Fees (MA,MB) under the maximal experimentation strategy (solid
curves) and in the myopic benchmark (dashed curves) for approximately sym-
metric externalities; e0A = 0.1, e1A = 0.9, e0B = 0.3, e1B = 0.7, vA = vB = σA =
σB = 1.

This result is illustrated in Figure 3. The intuition for it is clear. Under approximately
symmetric externalities, the direction of experimentation must be the same on both sides,
and charging less than the myopic optimum makes observed participation unambiguously
more informative.

Proposition 5 For e1B < e1A and e0B su�ciently close to e1B, the optimal fee on side A
exceeds its myopic benchmark at beliefs close to 1, while the fee on side B is always below
its myopically optimal level.

This result is illustrated in Figure 4. The intuition here is essentially the same as for
Proposition 3. If the externality exerted by side A is subject to moderate uncertainty
only, the platform provider optimally experiments by lowering the fee on side B. And
when the price e�ect that side A is expected to have on side B is weaker than the price
e�ect in the other direction, the platform provider again extracts surplus from side A by
charging it a higher fee. If e1B < e0A, we have the stronger result that for e

0
B su�ciently

close to e1B, the platform provider always charges side A more than Mµ
A.

Our next aim is to provide su�cient conditions for price experimentation to work
in a particular direction, and to cover the ground `in between' symmetry and one-sided
uncertainty. Besides the expected price e�ects ℓ0, ℓA and ℓB, these conditions involve the
constants

sA =
1

2

∂2S

∂M2
A

, sB =
1

2

∂2S

∂M2
B

and sAB =
1

2

∂2S

∂MA∂MB

,

which are all positive when price e�ects are ordered (see Appendix A.2, where these con-
stants are computed in terms of the primitive parameters of the model). Strict convexity
of S further means that sAsB − s2AB > 0.

Proposition 6 Suppose that price e�ects are ordered. Consider a belief p for which both
myopically optimal fees are lower than the respective intrinsic values. Then, the platform
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Figure 4: Fees (MA,MB) under the maximal experimentation strategy (solid
curves) and in the myopic benchmark (dashed curves) for approximately one-
sided uncertainty; e0A = 0.1, e1A = 0.9, e0B = 0.45, e1B = 0.55, vA = vB = σA =
σB = 1.

provider lowers the fee on side A relative to the myopically optimal level if

ℓ0(p)

ℓAB(p)
>

sB
sAB

, (14)

and raises it if
ℓ0(p)

ℓAB(p)
<

sAB

sA
. (15)

Similarly, the platform provider lowers the fee on side B relative to the myopically
optimal level if

ℓ0(p)

ℓAB(p)
>

sA
sAB

, (16)

and raises it if
ℓ0(p)

ℓAB(p)
<

sAB

sB
. (17)

It is straightforward to give a geometric intuition for conditions (14)�(17) in terms
of iso-revenue and iso-information curves in the (MA,MB)-plane. We have already seen
that the slope of the iso-revenue curve through any point on the vertical line segment
Lµ

A = {(MA,MB) : MA = Mµ
A, MB ≤ vB} is −ℓAB/ℓ0. A simple computation further

shows that the slope of the iso-information curve through any point on the line segment
Lv

A = {(MA,MB) : MA = vA, MB ≤ vB} is −sAB/sB; when Mµ
A < vA and Mµ

B < vB, the
elliptic shape of the iso-information curves implies that the slope of the iso-information
curve through any point on Lµ

A is strictly smaller than −sAB/sB. Under condition (14),
this in turn is strictly smaller than −ℓAB/ℓ0, so in each point on Lµ

A the iso-information
curve declines more steeply than the iso-revenue curve and, exactly like in Figures 1(a)
and 1(b), the platform provider can raise both its expected revenue and the information
content of observed participation by setting MA below its myopically optimal level.

Similarly, the slope of the iso-information curve through any point on the line segment
Lv

B = {(MA,MB) : MA ≤ vA, MB = vB} is −sA/sAB; when Mµ
A < vA and Mµ

B < vB, the
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elliptic shape of the iso-information curves implies that the slope of the iso-information
curve through any point on Lµ

A is strictly larger than −sA/sAB. Under condition (15),
this in turn is strictly larger than −ℓAB/ℓ0, so in each point on Lµ

A the iso-information
curve declines less steeply than the iso-revenue curve and, as in Figure 1(c), the platform
provider can raise both its expected revenue and the information content of observed
participation by setting MA above its myopically optimal level.

In an analogous manner, conditions (16) and (17) translate into inequalities between
the slopes of the iso-revenue and iso-information curves along the line segment Lµ

B =
{(MA,MB) : MA ≤ vA, MB = Mµ

B}.
Note that conditions (15) and (17) � which jointly would imply fees above the myopic

optimum on both sides � cannot hold at the same time. If they did, we would have(
ℓ0
ℓAB

)2

<
s2AB

sAsB
< 1

� a contradiction to the fact, established in Section 4, that 0 < ℓAB < ℓ0.
The ratio ℓ0/ℓAB is either decreasing in p or constant (see Appendix A.1). If condition

(14) is met at a belief p̂, therefore, it will be met at all p < p̂. The reason for this is
straightforward: a lower p implies a �atter iso-revenue curve and thus makes it `cheaper'
(in terms of expected revenue) to lower the fee on side A for informational purposes. By
the same line of argument, (16) also becomes easier to satisfy as p decreases, while (15)
and (17) become harder to satisfy. Thus, a su�cient condition for uniformly lower fees
on both sides of the market is that (14) and (16) both hold at p = 1, and a su�cient
condition for a uniformly higher fee on one side is that either (15) or (17) hold at p = 0.24

As the left-hand sides of (14) and (16) exceed 1, the inequality si ≤ sAB is also su�cient
for a uniform fee decrease on side i = A,B.

One can easily formulate weaker su�cient conditions by exploiting the fact (established
in Appendix A.2) that the ratios sA/sAB and sAB/sB are bounded below and above by
terms involving only the price e�ects (ℓθi )i=0,A,B; θ=0,1. When e1B > e0B, for example, the
inequality ℓ1i − ℓ0i ≤ ℓ10 − ℓ00 for i = A or B already implies a uniform fee decrease on side
i, irrespectively of the noise parameters σA and σB. In line with Proposition 5, this holds
on side B, for instance, when e1B is only somewhat higher than e0B, so that the externality
which side A exerts on side B is rather well known from the outset and there is much
more to be learned from lowering the fee on side B.

Finally, Proposition 6 implies a fee above the myopic benchmark on side B at beliefs
close to 1 when (i) e1B − e0B is very close to e1A − e0A, (ii) e1B exceeds e1A by a su�cient
amount, and (iii) σA/σB is su�ciently large. In such a situation, there is more to be
learned from lowering the fee on side A. Given enough con�dence in the state θ = 1, this
is expected to have a comparatively strong e�ect on the surplus given to side B and hence
makes it optimal to charge this side a fee above the myopically optimal level.

7.5 Mixed Price E�ects

The su�cient conditions in Proposition 6 also apply to scenarios with mixed price e�ects
(e1B < e0B with ℓ10 < ℓ00 or ℓ

1
B < ℓ0B) as long as sAB remains positive. It is straightforward

to formulate analogous conditions when this coe�cient is negative (which can happen for
ℓ1B < ℓ0B); we therefore do not state them in a formal proposition.

24In this discussion, we maintain the assumption of Proposition 6 that both myopically optimal fees
are lower than the respective intrinsic values.
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Instead, we turn to the very tractable special case of antisymmetric externalities (e1B =
e0A, e0B = e1A), symmetric intrinsic values (vA = vB) and symmetric noise intensities
(σA = σB). In this case, sA = sB and sAB = 0, so the iso-information curves are concentric
circles. More importantly, the platform provider's pricing problem is symmetric with
respect to the belief 1/2: the value function and the shadow price of information satisfy
v(p) = v(1 − p) and V (p) = V (1 − p) while the myopic and optimal pricing strategies
satisfy Mµ

A(p) = Mµ
B(1− p) and M∗

A(p) = M∗
B(1− p).

Proposition 7 Suppose that (e1B, e
0
B, vB, σB) = (e0A, e

1
A, vA, σA). Then there exists a belief

p̄ > 1/2 such that relative to the myopic optimum, the platform provider lowers the fee
on side A for beliefs in the interval ]0, p̄[ and lowers the fee on side B for beliefs in the
interval ]1− p̄, 1[ . The platform provider sets a fee above the myopically optimal level on
side A for beliefs close to 1 (and on side B for beliefs close to 0) if and only if the higher
of the two externality parameters exceeds 1/2.

When the platform provider is highly uncertain about which side exerts the stronger
externality, that is, when the belief is close to 1/2, both sides are charged less than in the
myopic benchmark. The intuition for this �nding is the same as the one suggested for
approximately symmetric externalities (see Proposition 4): given that the fees charged
to the two sides must be close to each other, the direction of experimentation must be
the same on both sides, and charging less than the myopic optimum makes observed
participation unambiguously more informative. For beliefs near a boundary of the unit
interval, on the other hand, the platform provider is fairly con�dent in knowing the side
that exerts the stronger externality on the other (if p is close to 1, say, this is side B), and
learns most e�ectively by lowering the fee on this side; whether it is optimal to recoup
some of the surplus this creates by raising the fee on the other side (side A for p close to
1) depends on the actual strength of the externality.

By the same continuity argument as in the proofs of Propositions 4 and 5, these �ndings
carry over qualitatively to scenarios of approximate antisymmetry where (e1B, e

0
B, vB, σB)

is close, but not identical, to (e0A, e
1
A, vA, σA). For the sake of brevity, we omit a formal

statement and just present an example in Figure 5. The di�erence between the maximal
experimentation fees and the myopic benchmark is considerably larger here than in Figures
3 and 4. This re�ects a stronger incentive to experiment when price e�ects are mixed: in
Figure 5, the di�erences Mµ

A(1)−Mµ
A(0) and Mµ

B(1)−Mµ
B(0) are almost twice as large in

absolute value as in Figures 3 and 4, so knowing the true state of the world matters much
more for optimal pricing. We shall return to this issue when we discuss how the optimal
pricing strategy depends on the parameters of the model.

8 Further Findings

8.1 Implications for Quantities

If the platform provider reduces both fees below the myopically optimal level, expected
participation on both sides increases irrespectively of the true state of the world. By
Proposition 4, this is the case for approximately symmetric externalities.

In scenarios where the platform provider sets a fee above the myopically optimal level
on one side, however, expected participation on this side may well decrease in some state of
the world. This phenomenon is barely visible in the lower left panel of Figure 6, computed
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Figure 5: Fees (MA,MB) under the maximal experimentation strategy (solid
curves) and in the myopic benchmark (dashed curves) for approximately
antisymmetric externalities; e0A = 0.1, e1A = 0.9, e0B = 0.95, e1B = 0.2,
vA = vB = σA = σB = 1.

with the same model parameters as Figure 4 (approximately one-sided uncertainty). In
state θ = 0, the externality exerted on side A is considerably weaker than the externality
exerted on side B, so when the platform provider raises the fee on side A at high beliefs p,
the ensuing negative e�ect on the participation on side A is not fully compensated by the
positive e�ect of a lower fee on side B. In state θ = 1, by contrast, the externality exerted
on side A is considerably stronger than the externality exerted on side B, and the positive
e�ect on nA of lowering MB more than compensates the negative e�ect of raising MA. In
either state, �nally, the comparatively large decrease in MB raises expected participation
on side B at all non-degenerate beliefs.

For approximately antisymmetric externalities, decreases in expected participation
occur on either side of the market; see Figure 7, which has been computed with the
same parameters as Figure 5. On side A, the situation is qualitatively the same as in
the example of approximate one-sided uncertainty that we just discussed, and can be
explained in exactly the same way; side B is essentially its mirror image with the roles of
the two states reversed.

In summary, participation rises on a given side either when the externality exerted on
this side is strong, or when this externality is weak and the platform provider believes
it is weak; participation falls on a given side when the externality exerted on this side is
weak but the platform provider believes it is strong and thus raises the fee on this side in
an attempt to capture some of the surplus created by lowering the other fee.

8.2 Comparative Statics

Inspection of the Bellman equation (10) shows that a multiplication of the noise intensities
σA and σB by a common factor γ has the same e�ect as a multiplication of r by γ2. By the
results mentioned in Section 6, for γ < 1 we obtain a higher value v at all non-degenerate
beliefs, and a higher shadow price of information V ; by a standard monotone comparative
statics argument, this in turn implies a higher quantity of information S at the optimal
fees and a lower expected current revenue R. How the optimal fees themselves change in
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Figure 6: Expected participation nA(MA,MB, θ) and nB(MA,MB, θ) under the
maximal experimentation strategy (solid curves) and in the myopic benchmark
(dashed curves) for approximately one-sided uncertainty; e0A = 0.1, e1A = 0.9,
e0B = 0.45, e1B = 0.55, vA = vB = σA = σB = 1.

response to this parameter change has been explored in Section 7: whenever the results
there imply an unambiguous direction of price experimentation for the fee on a given side,
this fee will change further in that direction.

The picture becomes less clear when we change only one noise intensity. By the
same comparison argument as in Keller and Rady (1997, Theorem 5.2 and Appendix
E.1), a decrease in σA, say, again leads to an increase in the value function, but the
e�ect on the shadow price of information can no longer be signed unambiguously because
minMA,MB

(v − R)/S is increasing in both σA and v. In the undiscounted limit, the
situation is simpler: the maximal shadow price of information V clearly rises as σA or
σB falls. As Figure 8 shows, such a parameter change can have a surprisingly strong
e�ect on optimal fees and participation levels. In each panel, the �leftmost� curve is
associated with σB = 1, and hence the same as in Figure 5 and Figure 7, respectively;
as σB decreases to 0.5 and 0.33, the curves shift to the right and exhibit steeper slopes.
A reduction in σB improves the signal-to-noise ratio in observed participation on side
B and increases the marginal informational bene�t of reducing the fee on side A. As a
consequence, the platform provider lowers MA at any non-degenerate belief. In turn, this
increases the extra surplus given to side B, so MB is raised by successively more and over
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Figure 7: Expected participation nA(MA,MB, θ) and nB(MA,MB, θ) under the
maximal experimentation strategy (solid curves) and in the myopic benchmark
(dashed curves) for approximately antisymmetric externalities; e0A = 0.1, e1A =
0.9, e0B = 0.95, e1B = 0.2, vA = vB = σA = σB = 1.

a successively larger range of beliefs. The concomitant changes in expected participation
are in line with our discussion of Figure 7.

When changing an intrinsic value or an externality parameter, another di�culty arises.
Now the above comparison argument no longer applies because the boundary conditions
change at the same time as the di�erential equation; put di�erently, such a parameter
change a�ects both the myopic benchmark and the optimal deviation from it. Still, the
propositions of Section 7 and numerical examples such as those in Figures 4 and 5 allow
us to gain some intuitive insights into the link between the incentives for experimentation
on the one hand, and the actual extent of experimentation on the other.

Given intrinsic values (vA, vB), noise intensities (σA, σB) and externality parameters
(e1A, e

0
A), for instance, let us say that the incentives for experimentation are higher for one

pair of parameters (e1B, e
0
B) than for another if both the di�erences Mµ

A(1) −Mµ
A(0) and

Mµ
B(1) − Mµ

B(0) are larger in absolute value for this pair than for the other. Similarly,
let us say that there is more experimentation for one pair of parameters (e1B, e

0
B) than for

another if both maxp |M∗
A(p)−Mµ

A(p)| and maxp |M∗
B(p)−Mµ

B(p)| are larger for this pair
than for the other.

It is a plausible conjecture that higher incentives for experimentation imply more
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Figure 8: Fees (MA,MB) as well as expected participation nA(MA,MB, θ) and
nB(MA,MB, θ) under the maximal experimentation strategy (solid curves) and
in the myopic benchmark (dashed curves) for approximately antisymmetric
externalities and di�erent noise intensities σB; e

0
A = 0.1, e1A = 0.9, e0B = 0.95,

e1B = 0.2, vA = vB = σA = 1, σB ∈ {1, 0.5, 0.33}.

26



experimentation at the optimum.25 This is trivially true if one of the two situations
to be compared involves symmetric externalities (e1B, e

0
B) = (e1A, e

0
A): these provide no

incentives for experimentation at all, and there is indeed no experimentation in this case
by Proposition 1; any other pair (e1B, e

0
B) is associated with higher incentives and actually

features some experimentation. The conjecture is also borne out by Figures 3�5: the
example of approximate symmetry in Figure 3 is associated with lower incentives for
experimentation than the example of approximately one-sided uncertainty in Figure 4,
which in turn is associated with lower incentives than the example of approximately
antisymmetric externalities in Figure 5; the extent of experimentation duly increases as
we move from one �gure to the next.26

This does not mean, however, that the quantity of information generated by the plat-
form provider increases in line with the incentives to experiment. Our examples suggest
the contrary, in fact. Evaluated along the maximal experimentation policy, S decreases
uniformly as we move from approximate symmetry to approximately one-sided uncertainty
and approximate asymmetry: we �nd 6.46 ≤ S(MA,MB) ≤ 7.41 for the parameters un-
derlying Figure 3, 2.02 ≤ S(MA,MB) ≤ 3.15 for Figure 4 and 0.59 ≤ S(MA,MB) ≤ 0.80
for Figure 5. The reason for this �nding is that the quadratic function S becomes uni-
formly smaller (and less convex) in each step, which re�ects a worsening signal-to-noise
ratio.27

8.3 Dynamic Implications

Relative to the platform provider's information �ltration, the process of beliefs (pt)t≥0 is
a di�usion without drift (Lemma 1). For any twice di�erentiable function f on the unit
interval, the transformed process (f(pt))t≥0 is again a di�usion, and its drift coe�cient is
of the same sign as f ′′(pt) by Ito's Lemma. Relative to the information �ltration of an
outsider who knows the true state of the world, the process of beliefs has an upward drift
if θ = 1, and a downward drift if θ = 0 (see the proof of Lemma 1); by Ito's Lemma,
the drift of the transformed process with respect to this �ltration depends on both f ′(pt)
and f ′′(pt). In view of the complicated structure of the optimal fees and the implied
participation levels, it seems exceedingly di�cult to determine the signs of their �rst and
second derivatives with respect to the belief in general, even in the undiscounted limit.
In fact, the slope and curvature of the myopically optimal fees already depend in a rather
complicated fashion on the intrinsic values and externality parameter. In Figure 3, for
example, Mµ

A and MA are strictly increasing and strictly convex functions of p, while Mµ
B

and MB are strictly decreasing and strictly concave; changing (e0B, e
1
B) from (0.3, 0.7) to

(0.95, 0.2) reverses the signs of all these slopes and curvatures. Figure 8, on the other
hand, shows that the slope and curvature of an optimal fee or implied participation level
can vary from one belief to another.

Nevertheless, a few robust statements can be made about the dynamics of beliefs, op-
timal fees and resulting participation levels. Following Bergemann and Välimäki (1997),

25To our knowledge, no conjecture of this type has been proved yet, not even for simpler situations
such as a standard monopoly pricing problem with just one decision variable and one outcome process.
In the present model, such a proof seems completely out of reach.

26For vA = vB = σA = σB = 1 and (e1A, e
0
A) = (0.9, 0.1), actually, one-sided uncertainty with e1B = e0B =

0.7 is associated with higher incentives for experimentation than any other scenario with e1B ≥ e0B , and
negatively correlated externalities with e1B = 0.2 and e0B → 1 are associated with the highest incentives
overall.

27See Appendix A.2 for the formulas necessary to substantiate this claim.
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we compute an estimate p̂t of the posterior belief pt in a given state of the world by numer-
ically solving the belief dynamics under the maximal experimentation strategy without
the stochastic component, focusing on expected in�nitesimal changes only. We then eval-
uate the maximal experimentation strategy and the induced participation levels along the
path of estimated beliefs. We do so for the state θ = 1 in which, as shown in the proof
of Lemma 1, the belief estimate evolves according to dp̂ = p̂(1− p̂)2S(MA(p̂),MB(p̂)) dt.
We take p0 = 0.2 as the platform provider's prior belief and hence the initial condition
for p̂.

The path of p̂t exhibits the S-shape familiar from Bergemann and Välimäki (1997),
�rst rising slowly, then rapidly, then slowly again as it converges monotonically to 1.
Convergence is faster under the maximal experimentation strategy than under the my-
opic policy. The comparison of quantities of information at the end of Section 8.2 further
implies that convergence is fastest in the example of approximately symmetric external-
ities, slower in the example of approximately one-sided uncertainty, and slowest in the
example of approximately antisymmetric externalities. This is re�ected in the di�erent
time scales used in Figure 9 which shows the induced trajectories of fees and participation
levels.28

A couple of dynamic pricing implications emerge from this �gure. Note that a myopic
platform has an on average increasing price path on one side of the market and a decreasing
one on the other. If the platform is forward-looking, fees converge more quickly to their
full information limits. We also know from Section 7 that for any given belief about
the state of the world, either one or both fees are below their myopically optimal levels.
This gives rise to price dynamics that fall into one of two regimes; which regime prevails
depends on the con�guration of externality parameters and initial beliefs.

In what we call the two-sided experimentation regime, the forward-looking platform
initially sets lower fees on both sides of the market than a myopic platform would; see
the illustrations with approximate symmetry and approximately one-sided uncertainty
in Figure 9. Then any price path that is on average increasing under myopic pricing
is initially steeper under forward-looking pricing. In the example of approximately one-
sided uncertainty, moreover, a fully informed platform �subsidizes� side B and �monetizes�
on side A because side A bene�ts more strongly from participation on side B. With
uncertainty about the state of the world, this subsidization is larger, and the surplus
extraction starts earlier, if the platform is forward-looking rather than myopic.

In the other regime, only one fee is below the myopic level at the initial belief. We call
this the experimentation and exploitation regime; see the illustration with approximate
antisymmetry in Figure 9. Since in the illustration we start with a prior belief p0 close to
zero, over time the platform changes its assessment as to which side exerts the stronger
externality. Therefore, fees are initially lower on side A and end up being larger; this
holds both for the myopic and the forward-looking platform. However, this inversion of
the price structure occurs at considerably higher speed if the platform is forward-looking.

To summarize, while in the two-sided experimentation regime consumers on both sides
initially are charged lower fees if the platform is forward-looking rather than myopic, in
the experimentation and exploitation regime one side initially faces a higher fee. In either
regime, an initially steeper and increasing price path amounts to introductory pricing

28The dashed curves in this �gure are generated by solving dp̂ = p̂(1 − p̂)2S(Mµ
A(p̂),M

µ
B(p̂)) dt and

evaluating the myopic policy and corresponding participation levels along this trajectory. That quan-
tities on side A and B converge to a common limit in each case is due to the easily veri�ed fact that
nA(M

µ
A(1),M

µ
B(1), 1) = nB(M

µ
A(1),M

µ
B(1), 1).
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Approximate Symmetry (e0B = 0.3, e1B = 0.7):
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Approximately One-Sided Uncertainty (e0B = 0.45, e1B = 0.55):
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Approximate Antisymmetry (e0B = 0.95, e1B = 0.2):
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Figure 9: Estimated trajectories of the fees (MA,MB) and the expected partic-
ipation levels nA(MA,MB, 1) and nB(MA,MB, 1) for θ = 1 under the maximal
experimentation strategy (solid curves) and in the myopic benchmark (dashed
curves); e0A = 0.1, e1A = 0.9, vA = vB = σA = σB = 1.
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with larger initial discounts. In all three examples, despite higher prices on one side for
some time, participation is larger on both sides if the platform is forward-looking instead
of myopic, whenever this di�erence in participation is pronounced. This tends to bene�t
participants.

We further note that experimentation can cause the trend in expected participation to
be non-monotonic over time. As larger quantities facilitate learning, the forward-looking
platform induces particularly high participation levels when the uncertainty about the
environment is highest, that is, once beliefs have moved towards the centre of the unit
interval; it lets participation levels decline again when it has become fairly con�dent of
the true state of the world.

Performing the same simulations for θ = 0 (and an initial belief p0 = 0.8, say) generates
exactly the same insights. If we consider the example in Figure 8 with σB = 0.33, however,
we �nd an interesting di�erence across the two states of the world. A platform provider
starting with the prior belief p0 = 0.5 expects MA to rise both in the short and in the
long term. If the true state is θ = 0, this price increase will be very gentle in expectation.
If the true state is θ = 1, by contrast, MA is expected to rise very quickly when the
posterior belief is about 0.85; the associated changes in MB, nA and nB are equally
drastic. Experimentation can thus make the variability of prices and quantities along
their estimated paths markedly higher in one state than in the other.

9 Conclusion

We have studied a monopolistic platform provider in a two-sided market who is uncertain
about the strength of interaction between the two sides. Maximizing expected lifetime
pro�ts, the platform provider faces the basic trade-o� between the con�icting aims of
maximizing current payo� and maximizing the information content of the market outcome.
How this trade-o� is resolved depends crucially on the precise con�guration of cross-group
externalities. In particular, the platform provider may raise the fee on one side of the
market so as to extract some of the surplus created by the experimentation-induced fee
reduction on the other side.

Our model was set in continuous time and allowed the platform provider to adjust
the price structure at any moment. In reality, for contractual or other reasons, platforms
tend to change prices rather infrequently. We conjecture that the static and dynamic
implications of optimal experimentation would be the same in a setting that incorporated
such restrictions.

Our analysis concerns a monopoly platform. Future work may want to look at mar-
kets with multiple di�erentiated platforms. As a starting point, it would be interesting to
analyze duopoly experimentation in a two-sided market in which there is single-homing
on both sides and full observability of actions and outcomes. In such a duopoly, a partic-
ipant acquired by one platform provider is a participant lost for the competitor. Owing
to cross-group externalities, this makes demand more sensitive to price changes than de-
mand in the monopoly setting with a �xed outside option that has been analyzed in this
paper. Therefore, one may conjecture that gaining information about the strength of
the externalities becomes more important. As has been pointed out in the literature on
duopoly experimentation (e.g., Mirman et al. 1994, Harrington 1995, Keller and Rady
2003), however, the public information generated by market signals may have a negative
value, in which case the duopolists have an incentive to generate less information than in
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the myopic equilibrium.
Suppose, for instance, that market participation is perfectly price-inelastic, as is the

case in the Hotelling-type model introduced by Armstrong (2006). Then, learning does
not increase future equilibrium pro�ts in expectation because pro�ts are linear in beliefs.
Since deviations from the myopic best response are costly, we conjecture that patient
platform operators do not behave di�erently from in�nitely impatient ones, and learn only
passively. The duopoly setting merits further, more general investigation, and it would
be interesting to understand the e�ect of the degree of di�erentiation on experimentation
in a two-sided market.

Another interesting extension is to consider a market for two (or more) goods that
are complements. Speci�cally, suppose that demands are linked through positive network
e�ects. Here we have in mind a situation in which a monopolist sells a product (or
technologically related products) to two distinct and distinguishable consumer groups. If
consumers in each group care directly or indirectly about the sum of the total number
of buyers in both groups (e.g., because a larger production volume increases average
product quality through learning-by-doing), we can rewrite this as a demand system with
within-group and cross-group externalities. Thus our analysis can possibly be extended
to capture experimentation in markets with complementary goods.

Appendix

A.1 Auxiliary Results for the Expected Current Revenue R

Suppressing the dependence on p and other variables, we rewrite the expected current revenue

as

R = Rµ − ℓ0
[
MA −Mµ

A

]2 − 2ℓAB

[
MA −Mµ

A

] [
MB −Mµ

B

]
− ℓ0

[
MB −Mµ

B

]2
. (A.1)

A straightforward application of the implicit-function theorem now shows that the slope of the

iso-revenue curve at the fee combination (MA,MB) is

dMB

dMA

∣∣∣∣
R=const.

= −
ℓ0

[
MA −Mµ

A

]
+ ℓAB

[
MB −Mµ

B

]
ℓAB

[
MA −Mµ

A

]
+ ℓ0

[
MB −Mµ

B

] .

In particular, we see that

dMB

dMA

∣∣∣∣
R=const.

= − ℓ0
ℓAB

for MB = Mµ
B and MA ̸= Mµ

A,

and
dMB

dMA

∣∣∣∣
R=const.

= −ℓAB

ℓ0
for MA = Mµ

A and MB ̸= Mµ
B.

Finally, a simple computation shows that the derivative of the ratio ℓ0/ℓAB with respect to p has
the same sign as −(e1A − e0A)− (e1B − e0B). So this ratio is either decreasing in p or constant.

A.2 Auxiliary Results for the Quantity of Information S

We �rst note that

nA(MA,MB, 1)− nA(MA,MB, 0) = d0 [vA −MA] + dA [vB −MB],

nB(MA,MB, 1)− nB(MA,MB, 0) = d0 [vB −MB] + dB [vA −MA],
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where

di = ℓ1i − ℓ0i (i = 0, A,B)

measures the di�erence in direct and indirect price e�ects between states θ = 1 and 0. Thus,

the quotient d0/σA captures the marginal change in the signal-to-noise ratio on side A when

the fee MA is lowered, and dA/σA the marginal change when MB is lowered. In the same way,

d0/σB and dB/σB capture the marginal e�ects on the signal-to-noise ratio on side B of lowering

MB and MA, respectively. Our assumptions on the externality parameters imply that dA is

always positive; d0 is positive if and only if e1B > (e0A/e
1
A)e

0
B, and dB is positive if and only if

e1B > e0B/[1 + (e1A − e0A)e
0
B]. As e0A/e

1
A < 1/[1 + (e1A − e0A)e

0
B] < 1, there are three possibly

scenarios: either d0 > 0 and dB ≥ 0 (in particular, this is the case when e1B ≥ e0B); or d0 > 0
and dB < 0; or d0 ≤ 0 and dB < 0. Finally, it is straightforward to check that

dAdB − d20 =
(e1A − e0A)(e

1
B − e0B)

(1− e0Ae
0
B)(1− e1Ae

1
B)

.

Next, we compute

S(MA,MB) = sA [MA − vA]
2 + 2sAB [MA − vA] [MB − vB] + sB [MB − vB]

2

with the constants

sA =
d20
σ2
A

+
d2B
σ2
B

=
1

2

∂2S

∂M2
A

, sB =
d20
σ2
B

+
d2A
σ2
A

=
1

2

∂2S

∂M2
B

, sAB =
d0dA
σ2
A

+
d0dB
σ2
B

=
1

2

∂2S

∂MA∂MB
.

The coe�cient sA is a measure of how fast the marginal informational gain from lowering the fee

MA increases as MA falls; it has two components, the �rst pertaining to demand observations

on side A, the second to demand observations on side B. The same structure is evident in the

coe�cients sB and sAB. Whereas sA and sB are clearly positive, sAB can vanish or become

negative when dB < 0. Simple computations reveal that

sA + sB − 2sAB =

(
d0 − dA

σA

)2

+

(
d0 − dB

σB

)2

and

sAsB − s2AB =

(
dAdB − d20

σAσB

)2
.

If e1B ̸= e0B, then sAsB − s2AB > 0 and the function S is strictly convex. If e1B = e0B = eB,
then the iso-information curves are parallel straight lines of slope −sA/sAB = −sAB/sB = −eB.

Finally, a straightforward computation shows that for sAB ̸= 0, the derivative of sA/sAB

with respect to σ2
A/σ

2
B has the same sign as d0dB(dAdB − d20), and the corresponding derivative

of sAB/sB the same sign as d0dA(dAdB − d20). Letting σ2
A/σ

2
B tend to 0 and ∞, respectively, we

see that for d0 ̸= 0, the ratios sA/sAB and sAB/sB are bounded below by min{d0/dA, dB/d0}
and bounded above by max{d0/dA, dB/d0}.

A.3 The Optimal Fees

Suppressing the dependence on p, we write Sµ = S(Mµ
A,M

µ
B) for the quantity of information at

the myopically optimal fees and

Sµ
A =

∂S

∂MA
(Mµ

A,M
µ
B) = 2sA(M

µ
A − vA) + 2sAB(M

µ
B − vB),

Sµ
B =

∂S

∂MB
(Mµ

A,M
µ
B) = 2sAB(M

µ
A − vA) + 2sB(M

µ
B − vB)
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for the corresponding partial derivatives; as (Mµ
A,M

µ
B) ̸= (vA, vB), at least one of these derivatives

is di�erent from 0. The quantity of information can now be rewritten as

S(MA,MB) = Sµ + Sµ
A [MA −Mµ

A] + Sµ
B [MB −Mµ

B]

+ sA [MA −Mµ
A]

2 + 2sAB [MA −Mµ
A][MB −Mµ

B] + sB [MB −Mµ
B]

2.(A.2)

Combined with equation (A.1), this yields the following representation for the maximand R+V S
in the Bellman equation (10):

Rµ + V Sµ + V Sµ
A [MA −Mµ

A] + V Sµ
B [MB −Mµ

B]− (ℓ0 − sAV ) [MA −Mµ
A]

2

− 2(ℓAB − sABV ) [MA −Mµ
A][MB −Mµ

B]− (ℓ0 − sBV ) [MB −Mµ
B]

2.

The �rst-order conditions are

2(ℓ0 − sAV ) [MA −Mµ
A] + 2(ℓAB − sABV ) [MB −Mµ

B] = V Sµ
A, (A.3)

2(ℓAB − sABV ) [MA −Mµ
A] + 2(ℓ0 − sBV ) [MB −Mµ

B] = V Sµ
B. (A.4)

The determinant of the Hessian matrix of R+ V S is 4h(V ) where

h(V ) = (ℓ0 − sAV )(ℓ0 − sBV )− (ℓAB − sABV )2.

Strict concavity of R + V S means that h(V ) > 0 and ℓ0 − sAV > 0, which in turn implies that

ℓ0 − sBV > 0.
The optimal pair of fees is the unique solution to the system (A.3)�(A.4):

M∗
A = Mµ

A +
V

2h(V )

{
(ℓ0 − sBV )Sµ

A − (ℓAB − sABV )Sµ
B

}
, (A.5)

M∗
B = Mµ

B +
V

2h(V )

{
(ℓ0 − sAV )Sµ

B − (ℓAB − sABV )Sµ
A

}
. (A.6)

The maximum R(M∗
A,M

∗
B) + V S(M∗

A,M
∗
B) can be computed as

Rµ + V Sµ +
V 2

4h(V )

{
(ℓ0 − sBV )(Sµ

A)
2 − 2(ℓAB − sABV )Sµ

AS
µ
B + (ℓ0 − sAV )(Sµ

B)
2
}
. (A.7)

Inserting the expressions for Sµ
A and Sµ

B into (A.5)�(A.6) and collecting the terms in Mµ
A−vA

and Mµ
B − vB, respectively, we see that for V > 0, the di�erence M∗

A−Mµ
A is of the same sign as[

ℓ0sA − ℓABsAB − (sAsB − s2AB)V
]
(Mµ

A − vA) + [ℓ0sAB − ℓABsB] (M
µ
B − vB), (A.8)

and the di�erence M∗
B −Mµ

B of the same sign as

[ℓ0sAB − ℓABsA] (M
µ
A − vA) +

[
ℓ0sB − ℓABsAB − (sAsB − s2AB)V

]
(Mµ

B − vB). (A.9)

A.4 The Maximal Experimentation Strategy

Fixing p, let yi = Mµ
i (p)− vi for i = A,B, and set ∆ = R(p) − Rµ(p). With the new variables

xi = Mi−Mµ
i (p) for i = A,B, the minimization problem in (12) and (13) amounts to minimizing

the ratio F (xA, xB)/G(xA, xB) where F (xA, xB) = ∆+ℓ0x
2
A+2ℓABxAxB+ℓ0x

2
B andG(xA, xB) =

sA(xA + yA)
2 + 2sAB(xA + yA)(xB + yB) + sB(xB + yB)

2. We suppress the arguments of these

functions from now on and indicate the partial derivative with respect to xi by means of the

subscript "i".
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Denote the minimum of F/G by γ. The �rst-order conditions are FiG−FGi = 0 for i = A,B
by the quotient rule, so we must also have

FA

GA
=

FB

GB
= γ (A.10)

at the minimum of F/G. As F = ∆+ 1
2FAxA+ 1

2FBxB and G = 1
2GA(xA+yA)+

1
2GB(xB+yB),

this in turn implies

1 =
F

γG
=

2∆+ FAxA + FBxB
γGA(xA + yA) + γGB(xB + yB)

=
2∆ + FAxA + FBxB

FA(xA + yA) + FB(xB + yB)

and hence FAyA+FByB = 2∆. Writing out the partial derivatives and re-arranging, we obtain an

a�ne relationship αxA+βxB = ∆ with α = ℓ0yA+ ℓAByB and β = ℓAByA+ ℓ0yB. Substituting
xB = (∆− αxA)/β into the identity FAGB = FBGA �nally yields a quadratic equation for xA.

A.5 Proofs

Proof of Lemma 1: Given a pair of prices (MA,MB), the observed quantity increments are(
dNA

dNB

)
=

(
ñA

ñB

)
dt+

(
σA 0
0 σB

)(
dZA

dZB

)
with ñA = nA(MA,MB, θ) and ñB = nB(MA,MB, θ).

Given the subjective probability p currently assigned to the state (e1A, e
1
B), the vector of

expected demands is (
Ep [ñA]
Ep [ñA]

)
= p

(
nA

nB

)
+ (1− p)

(
nA

nB

)
with nA = nA(MA,MB, 1), nB = nB(MA,MB, 1), nA = nA(MA,MB, 0) and nB = nB(MA,MB, 0).

According to Liptser and Shiryayev (1977), the in�nitesimal change in beliefs is given by

dp = p

(
nA − Ep [ñA]
nB − Ep [ñB]

)(
σ−1
A 0

0 σ−1
B

)(
dẐA

dẐB

)
where (

dẐA

dẐB

)
=

(
σ−1
A 0

0 σ−1
B

)(
dNA − Ep [ñA] dt
dNB − Ep [ñB] dt

)
=

(
σ−1
A 0

0 σ−1
B

)(
ñA − Ep [ñA]
ñB − Ep [ñB]

)
dt+

(
dZA

dZB

)
is the increment of a standard two-dimensional Brownian motion relative to the platform provider's

information �ltration.

Simplifying the expression for dp, we obtain

dp = p(1− p)(nA − nA)σ
−1
A dẐA + p(1− p)(nB − nB)σ

−1
B dẐB.

Relative to the platform provider's information �ltration, dẐA and dẐB are normally distributed

with mean zero and variance dt, and the in�nitesimal covariance < dẐA, dẐB > is zero, so the

change in beliefs dp is normally distributed with mean zero and variance

p2(1− p)2(nA − nA)
2σ−2

A dt+ p2(1− p)2(nB − nB)
2σ−2

B dt = p2(1− p)2S(MA,MB) dt.
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Now consider a pricing policy with S(MA,MB) bounded away from 0, and suppose that the

true state is θ = 1. As(
dẐA

dẐB

)
=

(
σ−1
A 0

0 σ−1
B

)(
nA − Ep [ñA]
nB − Ep [ñB]

)
dt+

(
dZA

dZB

)
,

we see that relative to the information �ltration of an outside observer who knows the true state

of the world, dp is normally distributed with mean

p
{
(nA − Ep [ñA])

2σ−2
A + (nB − Ep [ñB])

2σ−2
B

}
dt = p(1− p)2S(MA,MB) dt.

As this is strictly positive on ]0, 1[ , the process of beliefs is a submartingale with respect to

the observer's �ltration and, if started at a non-degenerate prior, almost surely converges to its

upper bound 1 as t → ∞. An analogous argument establishes convergence to 0 when the true

state is θ = 0.

Proof of Lemma 2: We �x a non-degenerate belief p. In Section 6, we saw that R + V S is

at least weakly concave in (MA,MB). In Appendix A.3, we computed the determinant of the

Hessian matrix of R + V S as 4h(V ) with h(V ) = (ℓ0 − sAV )(ℓ0 − sBV ) − (ℓAB − sABV )2 and

noted that strict concavity means h(V ) > 0 and ℓ0 − sAV > 0.
If R+V S is not strictly concave, its Hessian matrix is negative semide�nite but not negative

de�nite (meaning h(V ) = 0 with ℓ0 − sAV > 0 or ℓ0 − sBV > 0) and the �rst-order conditions

(A.3)�(A.4) collapse into a single equation which de�nes the locus of all fee combinations along

which R+ V S achieves its maximum. Thus, we must have

ℓ0 − sAV

ℓAB − sABV
=

ℓAB − sABV

ℓ0 − sBV
=

Sµ
A

Sµ
B

with all numerators and denominators being di�erent from zero. In particular, the inequality

ℓ0 − sAV > 0 holds in this case as well.

As h(0) = ℓ20− ℓ2AB > 0 and h(ℓ0/sA) ≤ 0, the function h has exactly one root in the interval

]0, ℓ0/sA]. We denote it by V̂ . Now, recall from Section 6 that V is strictly decreasing in the

interest rate r. If there were an r > 0 such that V = V̂ , then we would have V > V̂ and h(V ) < 0
for all interest rates smaller than r, which contradicts what was said in the �rst two paragraphs

of this proof. We can thus conclude that h(V ) > 0 for all r > 0.

Proof of Proposition 1: The myopically optimal revenue Rµ(p) = R(vA/2, vB/2, p) is linear
in p. So the function v = Rµ trivially solves the Bellman equation (10) with V ≡ 0.

Proof of Proposition 2: For e1B = e0B = 0, we have ℓ0 ≡ 1, ℓB ≡ 0, ℓA(p) = pe1A+(1−p)e0A,
sA = sAB = 0 and sB = (e1A − e0A)

2σ−2
A . The term (A.8) thus simpli�es to −ℓAsB[M

µ
B − vB]/2,

and its counterpart (A.9) to sB[M
µ
B − vB]. Finally, M

µ
B < vB by (8).

Proof of Proposition 3: For e1B = e0B = eB, the ratios ℓB/ℓ0, sAB/sB and sA/sAB all

reduce to eB. The term (A.9) thus has the same sign as (ℓ0 − eBℓAB)[eB(M
µ
A − vA)+Mµ

B − vB],
and a simple computation using (7)�(8) shows that the expression in square brackets is indeed

negative. The term (A.8) has the same sign as (ℓB − ℓA)[eB(M
µ
A − vA) +Mµ

B − vB], and hence

is positive if and only if ℓA > ℓB.

Proof of Proposition 4: For (e0B, e
1
B) = (e0A, e

1
A) = (e0, e1), we have ℓA = ℓB = ℓAB, dA =

dB and sA = sB, so we shall simply write ℓ, d and s for these objects. We know from Proposition

1 that the Bellman equation (10) is solved by the a�ne function Rµ, so that V ≡ 0. As

Mµ
A ≡ vA/2, M

µ
B ≡ vB/2, the terms (A.8)�(A.9) are thus of the same sign as − [ℓ0s− ℓsAB] vA−

[ℓ0sAB − ℓs] vB and − [ℓ0sAB − ℓs] vA− [ℓ0s− ℓsAB] vB, respectively. If the expressions in square

brackets are positive at all beliefs, then both terms are negative and bounded away from 0 on
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the unit interval, and the result follows by continuous dependence of the value function and its

second derivative on (e0B, e
1
B).

As ℓ0/ℓ is strictly decreasing in p (see Appendix A.1), and sAB/s < s/sAB < d/d0, it is

enough to show that
ℓ10
ℓ1

>
ℓ1 − ℓ0

ℓ10 − ℓ00
.

This inequality is easily seen to hold for all (e0, e1) with 0 ≤ e0 < e1 < 1.

Proof of Proposition 5: We know from the proof of Proposition 3 that for e0B = e1B, the
expression in curly brackets in (A.6) is negative and bounded away from 0 on the unit interval,

while the expression in curly brackets in (A.5) is of the same sign as ℓA − ℓB. The result thus

follows by continuous dependence of the value function and its second derivative on (e0B, e
1
B).

Proof of Proposition 6: Under condition (14), the coe�cient of Mµ
B −vB in (A.8) is clearly

positive, and using the fact that V < ℓ0/sB, we have

ℓ0sA − ℓABsAB − (sAsB − s2AB)V > ℓ0

(
sA −

sAsB − s2AB

sB

)
− ℓABsAB

> ℓAB

[
sB
sAB

(
sA −

sAsB − s2AB

sB

)
− sAB

]
= 0,

so that the coe�cient of Mµ
A − vA in (A.8) is also positive.

Under condition (15), the coe�cient of Mµ
A − vA in (A.8) is clearly negative, and we have

ℓ0(p)

ℓAB
<

sB
sAB

,

so that the coe�cient of Mµ
B − vB in (A.8) is also negative.

The statements about the fee on side B follow in the same way.

Proof of Proposition 7: We write (e1B, e
0
B) = (e0A, e

1
A) = (e, e) with 0 ≤ e < e < 1, and

vA = vB = v. The expected direct price e�ect ℓ0 is constant and equal to 1/(1−ee). The expected
indirect e�ects are given by ℓA(p) = e(p)ℓ0 and ℓB(p) = e(1−p)ℓ0 with e(p) = pe+(1−p)e; as a
consequence, ℓAB is constant as well, being equal to (e+e)ℓ0/2. We computeMµ

A(p) = [12+f(p)]v
and Mµ

B(p) = [12 − f(p)]v with

f(p) =
e− e

2 + e+ e

(
p− 1

2

)
.

Appendix A.2 implies sAB = 0; given that σA = σB, moreover, sA = sB. Writing s for this

parameter, we see that the term (A.8) has the same sign as (ℓ0−sV +ℓAB)f(p)− 1
2(ℓ0−sV −ℓAB).

Appendix A.3 implies ℓ0−sV > ℓAB, so there exists p̄ > 1/2 such that this expression is negative

for all p < p̄. The limit of the expression as p → 1 and V → 0 is of the same sign as(
1 +

e+ e

2

)
f(1)− 1

2

(
1− e+ e

2

)
= e− 1

2
.

Finally, the term (A.9) is of the same sign as (ℓ0 − sV + ℓAB)f(1− p)− 1
2(ℓ0 − sV − ℓAB).

36



References

Anderson, S.P. and S. Coate (2005): �Market Provision of Broadcasting: A Welfare
Analysis�, Review of Economic Studies, 72, 947�972.

Armstrong, M. (2006): �Competition in Two-sided Markets�, RAND Journal of Eco-
nomics, 37, 668�691.

Becker, G. S. andMurphy, K. M. (1993): �A Simple Theory of Advertising as a Good
or Bad�, Quarterly Journal of Economics, 104, 942�964.

Belleflamme, P. and M. Peitz (2010): Industrial Organization: Markets and Strate-
gies. Cambridge: Cambridge University Press.

Bergemann, D. and J. Välimäki (1997): �Market Di�usion with Two-sided Learning�,
RAND Journal of Economics, 28, 773�795.

Bergemann, D. and J. Välimäki (2002): �Entry and Vertical Di�erentiation�, Journal
of Economic Theory, 106, 91�125.

Bergemann, D. and J. Välimäki (2008): �Bandit Problems,� in: The New Palgrave
Dictionary of Economics (2nd edition, ed. by S. Durlauf and L. Blume), Bas-
ingstoke and New York, Palgrave Macmillan Ltd.

Bolton, P. and C. Harris (2000): �Strategic Experimentation: the Undiscounted
Case,� in: Incentives, Organizations and Public Economics � Papers in Honour
of Sir James Mirrlees (ed. by P.J. Hammond and G.D. Myles), 53�68, Oxford
University Press.

Bonatti, A. (2011): �Menu Pricing and Learning�, American Economic Journal: Mi-
croeconomics, 3, 124�163.

Cabral, L. (2011): �A Dynamic Theory of Two-Sided Markets�, working paper, New
York University, available at https://www.researchgate.net/publication/228944076.

Felli, L. and Harris, C. (1996): �Learning, Wage Dynamics and Firm-Speci�c Human
Capital�, Journal of Political Economy, 104, 838�868.

Harrington, J.E. Jr. (1995): �Experimentation and Learning in a Di�erentiated-
Products Duopoly�, Journal of Economic Theory, 66, 175�288.

Jovanovic, B. (1979): �Job Matching and the Theory of Turnover�, Journal of Political
Economy, 87, 972�990.

Kaiser, U. and J. Wright (2006): �Price Structure in Two-Sided Markets: Evidence
from the Magazine Industry�, International Journal of Industrial Organization, 24,
1�28.

Keller, G. and S. Rady (1997): �Optimal Experimentation in a Changing Environ-
ment�, Research Paper No. 1443, Stanford Graduate School of Business, available
at http://dx.doi.org/10.2139/ssrn.51597.

Keller, G. and S. Rady (1999): �Optimal Experimentation in a Changing Environ-
ment�, Review of Economic Studies, 66, 475�507.

Keller, G. and S. Rady (2003): �Price Dispersion and Learning in a Dynamic Di�erentiated-
Goods Duopoly�, RAND Journal of Economics, 34, 138�165.

Liptser, R.S. and A.N. Shiryayev (1977): Statistics of Random Processes I. New York:
Springer-Verlag.

Mirman, L.J., L. Samuelson and E. Schlee (1994): �Strategic Information Manipu-
lation in Duopolies�, Journal of Economic Theory, 62, 363�384.

Moscarini, G. (2005): �Job Matching and the Wage Distribution�, Econometrica, 73,
481�516.

37



Nocke, V., M. Peitz and K. Stahl (2007): �Platform Ownership�, Journal of the
European Economic Association, 5, 1130�1160.

Papageorgiou, T. (2014): �Learning Your Comparative Advantages�, Review of Eco-
nomic Studies, 81, 1263�1295.

Peitz, M., S. Rady and P. Trepper (2011): �Experimentation in Two-Sided Markets�,
SFB/TR 15 Discussion Paper No. 365, available at http://www.sfbtr15.de/uploads/
media/365.pdf.

Prat, J. and B. Jovanovic (2014): �Dynamic Contracts when the Agent's Quality is
Unknown�, Theoretical Economics, 9, 865�914.

Prescott, E.C. (1972): �The Multiperiod Control Problem under Uncertainty�, Econo-
metrica, 40, 1043�1058.

Rochet, J.C. and J. Tirole (2003): �Platform Competition in Two-Sided Markets�,
Journal of the European Economic Association, 1, 990�1029.

Rochet, J.C. and J. Tirole (2006): �Two-Sided Markets: An Overview�, RAND Jour-
nal of Economics, 37, 645�667.

Rothschild, M. (1974): �A Two-Armed Bandit Theory of Market Pricing�, Journal of
Economic Theory, 9, 185�202.

Rysman, M. (2004): �Competition between Networks: A Study of the Market for Yellow
Pages�, Review of Economic Studies, 71, 483�512.

Rysman, M. (2009): �The Economics of Two-Sided Markets�, Journal of Economic Per-
spectives, 71, 125�143.

Sannikov, Y. (2008): �A Continuous-Time Version of the Principal-Agent Problem�,
Review of Economic Studies, 75, 957�984.

Weyl, G. (2010): �A Price Theory of Multi-Sided Platforms�, American Economic Re-
view, 100, 1642�1672.

38


	CESifo Working Paper No. 5346
	Category 11: Industrial Organisation
	May 2015
	Abstract

