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ABSTRACT 
 

How Falsifiable is the Collective Model? 
A New Test with an Application to Monogamous and 

Bigamous Households in Burkina Faso* 
 
Collective rationality is seldom if ever rejected in the literature, raising doubt about its 
falsifiability. We show that the standard approach to test the collective model with distribution 
factors may yield misleading inference. We generalize the model and provide an appropriate 
test procedure to assess its validity. Our new approach extends to households that include 
more than two decision-makers (e.g., polygamous households, adult children). We 
investigate household consumption decision-making within monogamous and bigamous 
households in Burkina Faso. Using the standard testing approach, collective rationality within 
monogamous households is not rejected. Using our proposed test procedure, collective 
rationality is however rejected for monogamous households. Furthermore, our test also 
rejects collective rationality for bigamous households. We conclude that the household 
efficiency does yield empirically falsifiable restrictions despite being scarcely rejected in the 
literature. 
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1. Introduction

The collective household model, based on Pareto efficiency, has become the main paradigm through
which much family microeconomics research is now conducted. The reasons for its widespread use
are twofold. First, the model rests upon a very small set of assumptions and yet still provides testable
restrictions (Browning and Chiappori, 1998; Chiappori and Ekeland, 2006). Second, under reasonable
conditions, the fundamentals of the model (typically individual preferences and the decision process)
can be partly identified (Chiappori and Ekeland, 2009). Therefore, intrahousehold distributional im-
pacts of various policies can be thoroughly investigated.

Because of its fundamental importance, the efficiency hypothesis has been scrutinized empirically
in a variety of contexts. Two broad sets of falsifiable restrictions have been proposed in the theoretical
literature to test whether household outcomes are indeed efficient. The first focuses on the price effects
in a given household demand system. The second is based on the effects of the so-called distribution
factors.1 The latter have received more attention in the empirical literature presumably because quality
data on prices are hard to come by and because they may be endogenous at least in non-experimental
settings.2

The theoretical literature provides three distinct ways distribution factors can be used to test the
efficiency hypothesis within two-member households. First, the proportionality condition states that
the ratio of the marginal effect of two distribution factors must be equal across demand equations
(Bourguignon et al., 1993; Browning et al., 1994; Bourguignon et al., 2009). Second, the z-conditional
demand condition requires the effects of the remaining distribution factors to vanish once the demand
equations are conditioned on the demand for some other good and upon substituting out one of the
distribution factors (Bourguignon et al., 2009). Finally, the rank condition posits that the impact of the
distribution factors must be at most of size one (Chiappori and Ekeland, 2006).

The collective model is hardly ever rejected when using tests based on distribution factors, assum-
ing given price levels. Some have thus been led to question the restrictive nature of the constraints
imposed by the efficiency hypothesis as compared with those of a non-cooperative (Nash) approach
(Naidoo, 2015). Others have raised concern over the statistical validity or power of the statistical tests
they imply. For instance, the proportionality condition implies a nonlinear restriction across equations
which is generally tested by means of a Wald test (Bourguignon et al., 1993; Browning and Chiappori,
1998; Quisumbing and Maluccio, 2003; Bobonis, 2009). Yet, Wald tests are not invariant to alge-
braically equivalent nonlinear parameterization of the null hypothesis (Dagenais and Dufour, 1991;

1Distribution factors are variables, such as the state of the marriage market, as proxied by the sex ratio, that influence
the decision process within the household but neither individual preferences nor the household budget set. Papers that use
distribution factors include Bourguignon et al. (1993), Browning et al. (1994), Browning and Chiappori (1998), Chiappori et
al. (2002), Quisumbing and Maluccio (2003), Bobonis (2009), Dauphin et al. (2011), Attanasio and Lechene (2014), while
papers that use price effects include Browning and Chiappori (1998) and Dauphin et al. (2011).

2There is a burgeoning literature which attempts to test collective rationality based on a non-parametric revealed-
preference approach. In these studies, the collective model is generally not rejected by the data (e.g., Vermeulen et al.,
2009).
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Agüero, 2008). Tests based on z-conditional demands are potentially more powerful because they boil
down to testing single equation exclusion restrictions. Nevertheless, z-conditional demand equations
include endogenous right-hand side variables and are typically estimated using an instrumental vari-
ables approach. The omitted distribution factors are natural instruments, but can prove to be weak.
Finally, it is well-known that rank condition tests may suffer from poor statistical power in small sam-
ples (Cambda-Mendez and Kapetanios, 2009).

Obviously, the restrictiveness of the constraints and the statistical apparatus used to investigate them
are intimately related. Yet, irrespective of the above issues, under-rejection of the efficiency hypothesis
may arise for a more practical matter. Indeed, in their seminal theoretical contribution, Bourguignon,
Browning and Chiappori (2009) (henceforth BBC2009) assume that at least one distribution factor
(locally) affects each demand equation.3 This assumption is hardly ever satisfied empirically. Yet,
the standard testing approach used in the literature to investigate the efficiency hypothesis based either
on the proportionality or the z-conditional demand condition requires the latter assumption to hold.
Such inconsistency between the statistical procedures and their underlying assumptions, we argue, is a
plausible candidate to explain under-rejection of the collective model.

The assumption of BBC2009 is perhaps too restrictive since distribution factors, by definition,
need only affect two (or more) demand functions.4 This is the starting point of our paper. We propose
a falsifiable restriction of the efficiency hypothesis which extends BBC2009’s approach insofar as it
does not require a distribution factor to (locally) affect each demand equation. The basic intuition
is that, even under collective rationality, it is possible that the demands for a subset of goods (e.g.,
heating, electricity, lodging) are not affected by the relative bargaining power of the members, at least
locally. In the case of two-member household, expenditures on these goods will then be independent
from all distribution factors. On the other hand, the demands for those goods that are influenced by the
spouses’ bargaining power must depend on all the distribution factors. This provides an alternative all
or nothing restriction which, we think, is more realistic than assuming that a distribution factor affects
each demand equation. We derive a set of testable conditions that take this restriction into account
and fully characterize collective rationality. This means that any given behavior is compatible with
collective rationality if and only if these conditions are satisfied, absent price variations.

As with z-conditional demands, the new falsifiable restriction boils down to testing an exclusion
restriction in each single equation. Because it rests upon unconditional demand functions, endogeneity
of right-hand side variables is not an issue for testing this constraint. Furthermore, we show how our
approach can be extended to households comprising potentially more than two decision-makers.

We illustrate our test procedure using a field survey conducted by one of the co-authors of this paper
to collect information on the decision process in very poor households from rural Burkina Faso. The
social and customary environments in which these households evolve are likely to impede enforcement
of efficient marriage contracts as these are deeply rooted in traditions that dictate expected behaviour

3See the first sentence of their Proposition 2.
4A distribution factor cannot only influence a single demand however since, by definition, it cannot affect the household

budget constraint.
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from both spouses. We investigate the efficiency of outcomes both in monogamous and bigamous
households. The latter face the same potential sources of inefficiency as monogamous households in
addition to facing jealousy or rivalry between co-wives. Our analysis focuses on consumption ineffi-
ciency. In a somewhat loosely related paper, Udry (1996) investigated production outcomes of rural
Burkina Faso households and strongly rejected efficiency.

The empirical analysis is based upon the widely used and flexible QUAIDS demand system. For
both monogamous and bigamous households our data clearly reject the efficiency assumption using
our test procedure. We also compute the rank condition of Chiappori and Ekeland (2006) which is
asymptotically equivalent to our (simpler) test procedure. Concern with sample size leads us to boot-
strap the rank test using a recent procedure proposed by Portier and Delyon (2014). The Chiappori and
Ekeland (2006) rank test is consistent with our own test as it rejects efficiency for both monogamous
and bigamous households. To illustrate how under-rejection of efficiency may arise, we next test the
proportionality condition despite the fact that the condition of BBC2009 is not satisfied, as is custom-
arily done in the literature. Our results show that collective rationality is (wrongly) not rejected for
monogamous households. Finally, the z-conditional demands approach cannot be implemented to test
the efficiency of our Bukinabé households by lack of proper (strong) instruments.

Our paper offers four contributions. First, we generalize the collective model proposed in BBC2009
by relaxing the assumption that at least one distribution factor affects each demand equation. We also
provide an appropriate procedure to test the extended model. Second, we generalize our approach
to the case of households comprising potentially more than two decision-makers (e.g., polygamous
households, extended families, adult children, multi-generational households). Our test is equivalent
to the Chiappori and Ekeland (2006) rank test but is presumably statistically more powerful in small
samples. Third, we show that the standard testing approach which usually overlooks the BBC2009
assumption is likely to lead to under-rejection of the collective model. Finally, using data from a survey
we have conducted in Burkina Faso, we investigate efficiency in allocation of consumption within
both monogamous and bigamous households. To our knowledge, this paper is the first to perform an
econometric analysis of rational collectivity within bigamous families based on consumption decisions.

The rest of the paper is organized as follows. The next section presents our generalization of
BBC2009’s collective model to households comprising respectively two and potentially more potential
decision-makers. We discuss our new procedure to test the model in each of these cases. We also
illustrate how the standard approach to test BBC2009’s model may yield misleading inference. Section
3 describes the socio-economic specificities of monogamous and polygamous households in Burkina
Faso and discusses the choice of our distribution factors. We also present the design of our survey and
the main samples characteristics. Section 4 presents our estimation results and provides various tests
of our generalized model for both monogamous and polygamous households. Section 5 concludes.
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2. Theoretical restrictions of the collective model based on distribution factors

Our theoretical approach is based on the collective model in the absence of price variation as in
BBC2009. We generalize their approach in two directions. First, we relax one of their crucial assump-
tions, namely that at least one distribution factor (locally) influences all the demand functions. Second,
given that part of our empirical analysis focuses on bigamous households, we allow households to
comprise more than two adult members.5

Consider a household with I + 1 members. Each member i draws his/her well-being from the
consumption of N market commodities, which we represent by the vector x. Each commodity may
be consumed privately or publicly by household members. All prices are normalized to 1 so that the
household budget corresponds to ι′x = m, where ι is a unit vector of dimension N and m is the level
of exogenous household expenditures.6

Each member i has his own preferences U i(x) over (private and public) goods consumed in the
household. No restrictions are imposed on the nature of the preferences. They can be egotistic or
altruistic and may involve externalities or other types of preference interactions. We assume that U i(x)
is strongly concave, twice differentiable in x and increasing in each of its arguments.

Under rationality, the outcomes of the household decision process are assumed to be Pareto-efficient.
This means that the household chooses a vector x such that no other feasible vector could make all
members at least as well off and at least one member strictly better off. The collective model also
allows the possibility for exogenous variables, called distribution factors, to influence the household’s
decisions. These variables are denoted by the vector z of dimension K.

The influence of these factors can be understood within a bargaining framework where each mem-
ber has an outside option, that is, an option he can resort to in case of disagreement over a proposed
consumption vector x. The poorer his/her outside options, the more he/she will be willing to com-
promise and thus the lower will be his/her bargaining power. As a result, the less the consumption
decisions will correspond to his/her preferences.

Outside options can vary across individuals and cultures. For example, members could behave non-
cooperatively in case of minor disagreements (Lundberg and Pollak, 1993; Chen and Woolley, 2001)
and eventually separate in case of major disagreements (Manser and Brown, 1980; McElroy, 1990). In
the latter case, the state of the marriage market (Becker, 1993) as proxied by the sex ratio (Chiappori et
al., 2002), the nature of divorce laws (Gray, 1998; Chiappori et al., 2002) and the relative contribution
of the spouse to the household income (Browning and Chiappori, 1998; Dauphin et al., 2011) have been
considered as distribution factors in the literature. In the context of developing countries, Haddad and
Kanbur (1992) stress the possibility for women to return to their native families in case of disagreement,
and discrimination against women in the market place as potential distribution factors.

5Note that Dauphin et al. (2011) investigate the efficiency of households comprising up to three potential decision-makers
(couples with an adult child) using price-based statistical tests.

6This assumes that the household does not produce any of these N goods, or that the goods produced within the household
can be freely sold and purchased on the market.
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The setting of collective rationality is equivalent to stating that there exists a vector µ(m, z) of I
non-negative Pareto weights such that x is the solution to the following program:

Max µ(m, z)′ [U1(x), ..., U I(x)] + U I+1(x)

subject to ι′x = m.

Thus the household pseudo-utility function7 to be maximized is a weighted sum of the individual utility
functions. The Pareto weight associated with the preferences of member i (for i 6= I + 1) can be inter-
preted as the importance attached to these, relative to those of the (I + 1)th member, in the household
decision process. If the Pareto weight of a given member is equal to zero, the household does not take
into account that member’s preferences in the decision process, other than via the possible caring pref-
erences of the other members. Thus, it is as if the member has no influence or power over household
choices. The I Pareto weights can therefore be viewed as the distribution of decision power within the
household and the number of decision makers as the number of strictly positive Pareto weights plus
one.

The Pareto weights might be functions of distribution factors and of household expenditures, in
which case they are assumed to be twice continuously differentiable in (m, z). It should be noted that
some weights may be (locally) constant while others may respond to distribution factors. Furthermore,
the non-constant weights may not all (locally) respond to the same distribution factors. When all the
weights are constants, the household is said to behave rationally in a unitary way because the objective
function can be interpreted as representing a unique utility function. When some of the weights are
non-constants, the household is said to behave rationally in a collective way because the objective
function cannot be interpreted as representing a unique set of preferences. If for example, two weights
are non-constant and linearly independent, then the I + 1-person household behaves as if it had three
distinct sets of preferences.

The demand system obtained from solving the above program for x can be written as: x =
x̂(m, µ(m, z)), with ι′x̂(m, µ(m, z)) = m from the adding-up restriction. This shows that the distri-
bution factors influence household consumption choices only through the non-constant Pareto weights
entering the household pseudo-utility function, which are potentially as many as I . This follows from
the fact that the distribution factors do not affect the Paretian frontier of the household consumption
possibilities, but only the household’s location on it. Clearly, since the Pareto weights are unobservable
so is the structural demand system. Yet, it is still possible to test whether the reduced form of the latter,
x(m, z), satisfies:

x(m, z) ≡ x̂(m,µ(m, z)). (1)

Proposition 2 of BBC2009 assumes that at least one distribution factor (locally) affects each de-
mand function. Yet, distribution factors need not locally influence more than two of the latter to yield
falsifiable restrictions. We thus start by relaxing this assumption and derive the appropriate test proce-
dure. Since BBC2009 adopt a global approach, they assume that at least one good is strictly monotone

7Strictly speaking, the maximand is not a utility function since it depends on the total expenditures of the household.
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in one observable distribution factor. We do not need this assumption because we adopt a local ap-
proach instead. Next, we generalize the test to the case where a household comprises more than two
potential decision-makers.

2.1. Generalization of Proposition 2 of BBC2009 - Two Decison-Makers

Consider a partition x ≡[x′J ,x′-J ]′ of the demand system and a partition z ≡[z′J , z′-J ]′ of the set of
distribution factors, with xJ and zJ having the same dimension J . Given such a partition, (1) can be
written as:8

xJ = xJ(zJ , z-J) ≡ x̂J(µ(zJ , z-J)), (2)

x-J = x-J(zJ , z-J) ≡ x̂-J(µ(zJ , z-J)). (3)

If the sub-system of reduced-form demand functions in (2) has continuous first partial derivatives
and is such that DzJxJ(zJ , z-J) is non-singular at a point P = (zJ , z-J), then we can use the Implicit
Function Theorem to invert xJ and zJ in some open neighborhood of P to get the following local
inverse function:9

zJ = zJ(xJ , z-J),

which has continuous first partial derivatives. Upon substituting the latter into (2) and (3) we get:

xJ = xJ(xJ , z-J) ≡ xJ(zJ(xJ , z-J), z-J) ≡ x̂J(µ(zJ(xJ , z-J), z-J)), (4)

x-J = x-J(xJ , z-J) ≡ x-J(zJ(xJ , z-J), z-J) ≡ x̂-J(µ(zJ(xJ , z-J), z-J)). (5)

The (local) sub-system of demands x-J in (5) is written as a function of the sub-system of (local) de-
mands xJ and of the distribution factors z-J .10 These are the so-called z-conditional demands proposed
by BBC2009. The sub-system x-J is said to be zJ -conditional, since it is conditional on the inversion of
zJ . We further assume that µ(z) and x̂(µ(z)) are differentiable at the point P . The first generalization
is as follows:

8We omit m from the argument to simplify the notation.
9In what follows, we denote the jacobian of x with respect to z as Dzx.

10Note that a demand function that is insensitive to a distribution factor may respond to it once it is conditioned on xJ

through the function zJ(xJ , z-J).
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Proposition 1. A system of N ≥ 2 demand functions of a household with I + 1 = 2 members is
locally compatible with rationality if, and only if, variables that do not enter the members’ individual
preferences or the overall household budget constraint, z, either do not influence the demand system
(unitary rationality):

Dzxn(z) = 0 ∀n=1,...,N, (7a)

or influence it in the following way when K ≥ 2 (collective rationality):11

Dzxn(z) = 0 or Dzxn(z) 6=6= 0 ∀n=1,...,N. (7b)

Moreover, the demands for which Dzxn(z) 6=6= 0, denoted x∗m(z), also satisfy:

∂x∗m(z)/∂z1
∂x∗m(z)/∂zk

=
∂x∗1(z)/∂z1
∂x∗1(z)/∂zk

6= 0 ∀ k=2,...,K, m=2,. . . ,M (7c)

and, equivalently,

Dz-1x
∗
m(x

∗
1, z-1) = 0 ∀ m=2,. . . ,M, (7d)

where 2 ≤M ≤ N.

The proof is reported in Appendix A. The proposition states that the demand system of a two-person
household is compatible with rationality if and only if it either complies with unitary rationality, (7a),
or with collective rationality, (7b), (7c), and, equivalently to the latter, (7d). According to Restriction
(7a), a demand system is compatible with unitary rationality if and only if none of its demand func-
tions is influenced by distribution factors, i.e., the existence of distribution factors is incompatible with
unitary rationality (K = 0). Our new all or nothing Restriction (7b) stresses that a demand system
that responds to at least two distribution factors is compatible with collective rationality if each of its
demands either does not respond to any of the distribution factors or responds to all of the distribution
factors. Equation (7c) further restricts the manner in which the distribution factors impact the demand
functions that respond to all of the distribution factors (denoted x∗m): the ratio of the marginal effects
of any two distribution factors must be equal across the latter. Finally, Restriction (7d) is equivalent to
(7c). It states that the demand functions x∗m are compatible with collective rationality only if they no
longer respond to the distribution factors once they are conditioned on any of them, i.e., are transformed
into their z1-conditional form. Many empirical applications investigate the efficiency hypothesis using
(7c). In most cases, the tests ignore Restriction (7b). Yet, the two go hand-in-hand. We will argue later
on that focusing on (7c) while ignoring (7b) partly explains why the efficiency assumption is hardly
ever rejected.

The intuition behind Proposition 1 is the following. In a rational household composed of two
members there is only one Pareto weight. The distribution factors, if they exist, can only exert their

11When N ≤ 2 or K = 1, collective rationality imposes no restrictions on the demand system.
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influence on consumption choices through the latter weight. If unitary rationality holds, then the Pareto
weight is constant. Each of its demand function, xn, must therefore satisfy (7a). On the other hand, if
collective rationality holds and distribution factors do exist, then the single Pareto weight must respond
to all of them. If a given demand function, xn, say, does not locally respond to the Pareto weight, it
will respond to none of the distribution factors (Dzxn(z) = 0). Conversely, if xn does respond to the
Pareto weight, it will be sensitive to all the distribution factors (Dzxn(z) 6=6= 0). Each demand xn
stemming from a collectively rational household must therefore satisfy the all or nothing Restriction
(7b). Furthermore, since distribution factors exert their effects through a single weight, the demand
functions that respond to it (x∗m) must be such that the ratio of the marginal effect of any two distribution
factors is equal to the ratio of the marginal effect of the two distribution factors on the weight, and this
ratio must be different from zero. Therefore, the ratio of the marginal effect of any two distribution
factors is equal across x∗m demands as stated by (7c). Finally, conditioning a given demand function,
x∗m, by another, x∗1 say, is equivalent to maintaining x∗1 constant. In order to maintain x∗1 constant, z1
must compensate for the variations in z-1 in such a way that the variations in the weight cancel out.
Restriction (7d) must thus hold for this z1-conditional demand.

An important corollary to the all or nothing Restriction is that a system in which some demands
respond to a subset of distribution factors while other demands respond to another subset of distribution
factors is not compatible with collective rationality when I + 1 = 2. The all or nothing Restriction is
absent from Proposition 2 of BBC2009 because it is assumed at the outset that one of the distribution
factors (locally) affects all the demand functions. Since there is a single Pareto weight, this amounts
to assuming that all the demand functions respond to the weight and therefore that they all respond
to all the distribution factors affecting the weight. This is equivalent to assuming that all the demand
functions satisfy (7b), and more precisely its second part, that is Dzxn(z) 6=6= 0. Hence, in the
BBC2009 framework our Proposition 1 boils down to restriction (7c) and, equivalently to the latter,
(7d).

It should be noted that while tests from Proposition 1 are based on a static definition of rationality,
they are also consistent with the intra-household allocation stage of any dynamic household decision
process that assumes within-period efficiency. This includes limited-commitment and full-commitment
intertemporal collective models (Chiappori and Mazzocco, 2014).12 Besides, Proposition 1 ignores the
intertemporal stage of the household decision process under dynamic rationality (based on Euler equa-
tions). Therefore, in dynamic collective models the restrictions of Proposition 1 are usually necessary
but in general not sufficient for collective rationality.

2.2. Generalization of Proposition 2 of BBC2009 - Multiple Decision-Makers

Proposition 1 is valid for households in which it can legitimately be assumed that there are at
most two decision-makers. Many household configurations (extended families, adult children, multi-
generational households, polygamous households, etc.), though, may potentially have more than two

12In a full-commitment intertemporal model, it is assumed that household members can commit at the initial period to all
future allocations of resources.

8



decision-makers.13 It is relatively straightforward to extend Proposition 1 to multiple potential decision-
maker households.

Proposition 2. A system of N > I + 1 demand functions of a household with I + 1 members is
locally compatible with rationality if, and only if, variables that do not enter the members’ individual
preferences or the overall household budget constraint, z, either do not influence the demand system
(unitary rationality):

Dzxn(z) = 0 ∀n=1,...,N. (8a)

or influence it in the following way whenK ≥ I+1 (collective rationality): there exists a non-negative
J ≤ I-1 for which14

Dz-Jxn(xJ , z-J) = 0 or

Dz∗L
xn(xJ , z-J) 6=6= 0 and Dz∗-L

xn(xJ , z-J) = 0 n=J+1,...,N, (8b)

where z-J≡[z∗′L , z∗′-L]′ with 1 ≤ L ≤ K-J . Moreover, when 2 ≤ L, the demand functions that satisfy
Dz∗L

xn(xJ , z-J) 6=6= 0, denoted x∗m(xJ , z-J), must also satisfy:

∂x∗m(xJ , z-J)/∂z
∗
1

∂x∗m(xJ , z-J)/∂z∗l
=
∂x∗1(xJ , z-J)/∂z

∗
1

∂x∗1(xJ , z-J)/∂z∗l
6= 0 ∀ l=2,...,L m=2,...,M (8c)

and, equivalently,

Dz-(J+1)x
∗
m(xJ , x

∗
1, z-(J+1)) = 0 ∀m=2,...,M, (8d)

where 2 ≤M ≤ N -J.

See Appendix A for the proof. This proposition states that the demand system of an I + 1-person
household is compatible with rationality if and only if it either complies with unitary rationality (8a) or
with collective rationality (8b), (8c), and, equivalently to the latter, (8d). Restriction (8a) is identical to
Restriction (7a). Restrictions (8b) and (8c) are equivalent to (7b) and (7c) but they involve z-conditional
rather than unconditional demand functions. Restriction (8b) states that the demand system of an I+1-
person household influenced by at least I+1 distribution factors is compatible with collective rationality
if there is a non negative J ≤ I − 1 for which each demand contained in x-J , once conditioned on
xJ , either does not respond to any of the remaining distribution factors (z-J ) or responds to a subset of
them, denoted z∗L.15 This subset must be the same for all the zJ -conditional demand functions. In other

13An earlier extension of Proposition 2.ii of BBC2009 to multiple decision-makers can also be found in Dauphin and Fortin
(2001).

14When N ≤ I + 1 or K < I + 1, collective rationality imposes no restrictions on the demand.
15In the case where each Pareto weight depends on all distribution factors, one has z∗L = z-J .
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words, those zJ -conditional demands that still respond to distribution factors must respond to the same
subset of distribution factors. The latter may include all the remaining distribution factors or a subset
of them. Hence, having some zJ -conditional demand functions responding to some distribution factors
and other zJ -conditional demand functions responding to other distribution factors is incompatible
with collective rationality. Restriction (8c) further states that the zJ -conditional demand functions
(x∗m(xJ , z-J)) responding to distribution factors z∗L are compatible with collective rationality only if
the ratios of the marginal effect of any two distribution factors included in z∗L are equal across them.
Finally, and equivalently to Restriction (8c), Restriction (8d) stresses that the x∗m(xJ , z-J) demand
functions are compatible with collective rationality only if they no longer respond to the distribution
factors once they are conditioned on one more demand influenced by z∗L (say x∗1).

Chiappori and Ekeland (2006) (henceforth CE2006) provide another generalization of Proposition
2 of BBC2009, which we present here in a slightly modified manner.

Proposition 3. (Chiappori and Ekeland (2006)) A system of N > I + 1 demand functions of a house-
hold with I + 1 decision-makers is compatible with rationality if, and only if, variables that do not
enter the members’ individual preferences or the overall household budget constraint, z, either do not
influence the demand system (unitary rationality):

rank [Dzx(z)] = 0 (9a)

or satisfies the following condition whenever K > I + 1 (collective rationality):16

0 < rank [Dzx(z)] ≤ I. (9b)

See CE2006 for the proof. Restriction (9a) is identical to our restrictions (7a) and (8a). Restriction
(9b) states that if there exists K > I + 1 distribution factors, then the rank of the matrix Dzx(z) must
be greater than zero, but no greater than I . Intuitively, there can be no more than I Pareto weights under
collective rationality. Since the distribution factors only impact the demand system through the latter,
if there are fewer weights than there are distribution factors, their effects on the demand functions must
necessarily be linearly dependent. Propositions 2 and 3 are equivalent. If a demand system satisfies
(8b), (8c) and (8d), it will also satisfy (9b) and vice versa. However, if (8b) is satisfied, but restrictions
(8c) and (8d) do not apply because L < 2, then (9b) may not be satisfied. This is because (8b) is only
necessary. However, under collective rationality, and as long as K + 1 ≥ I , it will always be possible
to partition x ≡[x′J ,x′-J ]′ and z ≡[z′J , z′-J ]′ in such a way that L ≥ 2.17

The two propositions provide falsifiable restrictions for an overall test of rationality. In the case
of Proposition 2, the first step is to test whether all the demands satisfy Restriction (8a), i.e., to test
whether households behave rationality in a unitary way. If this hypothesis is rejected, the next step is
to test collective rationality. The general formulation of the null hypothesis corresponding to collective

16When N ≤ I + 1 or K < I + 1, collective rationality imposes no restrictions on the demand system.
17Note that just as for Proposition 2, Proposition 3 does not require any of the distribution factors to affect all the demands.
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rationality is H0 : J ≤ I-1 versus H1 : J > I-1. Since H0 is a composite hypothesis, a sequential
approach can be followed. One should thus start by testing whether all the demand functions satisfy
Restriction (8b) when J = 0. If this hypothesis is rejected, the Restriction (8b) has to be tested
for J = 1 and so on until it is not rejected for J ≤ I-1. If the Restriction (8b) is not rejected for
J ≤ I-1, the restriction (8c) or (8d) should be tested for those demand functions that are influenced by
distribution factors. If the latter hypothesis is not rejected, then testing stops and collective rationality
is not rejected. Conversely, if restriction (8c) or (8d) is rejected, then Restriction (8b) should be tested
again for a higher J . If the restrictions (8b) and (8c) or (8d) are successively rejected for all J ≤ I-1,
then collective rationality as well as overall rationality must be rejected. The same sequential approach
must be used with Proposition 3. The first step is to test whether the rank of Dzx(z) is equal to zero.
If not, then the next step is to test whether it is equal to 1 and so on until I is reached. If the rank is
not found to be equal or inferior to I , then overall rationality is rejected. If the rank is found to be of
any value greater than 1 but inferior or equal to I , then testing stops and collective rationality is not
rejected.

2.3. Empirical Investigations of Household Collective Rationality

In this sub-section, we show and illustrate how our propositions partly explain why the standard
testing approach is likely to under-reject the collective model with distribution factors. Household col-
lective rationality is the object of much research in the empirical literature (see Chapter 5 of Browning
et al., 2014). Most papers focus on households composed of two adults, which is the concern of our
Proposition 1. Demand systems are estimated using data from developed as well as developing coun-
tries and are based on a variety of functional forms (AIDS, QUAIDS, EASI, etc.). Likewise, a rich set
of distribution factors are used to proxy spouses’ relative bargaining power (relative income, relative
age, relative assets at marriage, etc.). It is thus rather surprising given such heterogeneous environments
that collective rationality is seldom rejected.

As shown earlier, for collective rationality in households with two potential decision makers to be
satisfied, the all or nothing Restriction (7b) needs to hold and restrictions (7c) and (7d) only apply to
the subset of demand functions that are responding to all the distribution factors. Yet, it is customary in
the literature to neglect Restriction (7b) and to test collective rationality by means of Restriction (7c)
or Restriction (7d) over the full set of demands, thus including those that do not respond to distribu-
tion factors as well as those who respond to a subset of them. This, we argue, partly explains why
collective rationality is likely to be under-rejected. For illustration, consider the paper by Quisumbing
and Maluccio (2003). It uses data from various developing countries to estimate household demand
systems. Assets of spouses at marriage are treated as distribution factors. Results for Bangladesh show
that only the demand for food significantly responds to husband’s assets while only the demand for
education responds to the wife’s assets. This is not compatible with collective rationality as it violates
the all or nothing Restriction. Indeed, in a demand equation where one distribution factor is statistically
significant, all other distribution factors should also be significant. Results for Ethiopia show that food
responds to the two distribution factors, but alcohol and tobacco only respond to the second distribution
factor. This is not compatible with collective rationality either. In both cases Restriction (7c) is tested
and not rejected, and hence nor is collective rationality.
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In Bobonis (2009), two distribution factors are considered. The first is a random dummy variable
indicating whether the household benefited from the PROGRESA cash transfers in Mexico. The sec-
ond distribution factor is the deviation from mean rainfall. Estimation results show that receiving cash
transfers significantly affects female clothing, child clothing, expenditures on fruit and vegetable and
expenditures on alcohol & tobacco. Deviation from mean rainfall further affects male clothing, ex-
penditures on other food and expenditures on other household goods. These results violate the all or
nothing Restriction. Despite this, Restriction (7c) is tested and is not rejected.

In a recent paper, Attanasio and Lechene (2014) use the same dataset as Bobonis (2009). Random
assignment to treatment is also used as a distribution factor. Deviation from mean rainfall is omitted
and is replaced by each spouses’ relative size and wealth of own family networks. Estimation results
show that expenditures on pulses significantly respond to the PROGRESA dummy variable but not to
the size of the family network. Based on the all or nothing Restriction, collective rationality should
have been rejected.18 Nevertheless, Restriction (7d) is tested and cannot be rejected.

The above examples are representative of how most papers test collective rationality. In what fol-
lows, we use data from rural Burkina Faso to investigate rationality within monogamous and bigamous
households. All or nothing Restriction (7b) (monogamous) or (8b) (bigamous) is first tested. If satisfied
we next move on to test (7c) or (8c) as the case may be. We also test collective rationality using the
asymptotically equivalent CE2006 rank test. We next use the same approach as in the above papers and
test Restriction (7c) irrespective of whether the all or nothing restriction (7b) holds.

3. The Burkinabé Family

Burkina Faso is one of poorest countries in the world. In 2014, the country ranked 181th out
of 185 countries, with a life expectancy of 56.3 years, an adult literary rate of 28.7% and a GDP
per capita of 1 602 PPP US$ (UNDP, 2014). Over 83% of the population lives in rural areas and
traditional agriculture, the mainstay of the economy, accounts for roughly 90% of total employment
(Jeune Afrique, 1998). In 2013, the total population was estimated at 16.9 millions (UNDP, 2014) and
comprises around 60 different ethnic groups of different sizes, although the Mossis account for nearly
half of the total (Jeune Afrique, 1998). Animism, the traditional religion, is gradually abandoned in
favor of Muslim and Catholic religions.

Polygamy is quite prevalent in Burkina Faso. It is estimated that up to 22% of men and 42% of
women are in a polygamous union (INSD, 2010). The proportion of women living in a polygamous
union increases with the age of the women. From 24% for the age group 15-19, it gradually increases
to 30% for the age group 20-24 and then to 55% for those aged between 40-44 (INSD, 2010). Marriage
is first and foremost an agreement between two families. Once married, divorce may not occur without
both their consent. Girls have little saying on their family’s decision. Marriages are sometimes agreed

18One could argue that individual Student-t tests for each distribution factor does not take into account the covariance
between the distribution factors. Since one of the distribution factors used by Bobonis (2009) and Attanasio and Lechene
(2014) is the random allocation of a cash transfer to women, its covariance with the other distribution factor should be zero.
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upon when the girls are still in their infancy. Usually, though, girls marry at the age of 18 and boys
around the age of 25 (INSD, 2010). Three types of marriage are possible: traditional, religious and civil.
Each type involves different rights and obligations. Traditional marriages, by far the most common,
do not restrict the number of spouses a man may have. Muslim marriages restrict the number of wives
to four, while catholic and civil marriages prohibit polygamy altogether. In practice, however, it is not
infrequent to encounter polygamous catholic men married under more than one matrimonial regime.

3.1. Distribution Factors

According to the anthropological literature,19 in the Mossi society, and in Burkina Faso in general,
spouses tend to behave non-cooperatively when a disagreement arises, at least initially. The husband
“refuses to give cereals, money and gifts to his wife and will favor another wife. The wife, in return,
will refuse to carry out her domestic and conjugal duties [...] The wife may thus refuse to fetch water
from the well for him, to heat it up for him, to wash his clothes and give him food that she has herself
produced or bought”.20 The more financially independent the wife is the greater will be her bargaining
power. The wife’s contribution to the household income could thus qualify as a distribution factor.

As time passes, the husband may gradually accumulate enough wealth to pay for the dowry of an
additional wife. The husband’s threat of a co-wife may thus become more and more credible over
time, thereby gradually reducing the bargaining power of the wife, ceteris paribus. The duration of
the marriage should thus qualify as a distribution factor in monogamous households. In the case of
polygamous households, the anthropological literature has also highlighted that a wife’s bargaining
power depends on the number of years since her marriage and on her rank. The wives “must submit
to an internal hierarchy conditioned by age and the length of the marriage: although negligible when
less than a decade separates their birth or their union, it is perceptible beyond that. [...] Furthermore,
the first wife has authority on the other wives”.21 This suggests to use the duration of the first wife’s
marriage relative to the duration of the second’s wife marriage.

Here, an important remark is in order. While our model assumes that the marriage status of the
household is exogenous, the above discussion suggests that it could be endogenous as it may partly be
determined by the relative bargaining power of the (first) wife. Indeed, the higher the bargaining power
of the wife is, the more likely she will be able to impose her (presumed) preference for monogamy.
This may be the source of a selection bias in our estimators as our econometric analysis is conditional
on the household marriage contract. Thus, omitting polygamous households when analyzing rationality
of monogamous households and vice versa may imply that the average bargaining power of the first
wife is overestimated in monogamous households and underestimated in polygamous households. A
natural approach to address this potential selection bias would involve modeling the marital status of
the household. This however would greatly complicate the analysis while being peripheral to the main

19The literature on Mossi families, on which this section is based, dates back to the seventies and eighties. The main
references are Lallemand (1977), Rookhuizen (1986) and Rohatynskyj (1988).

20Rookhuizen (1986), p. 59, free translation.
21Lallemand (1977), p. 263, free translation.
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point we wish to underline in this article. It must also be recognized that such a selectivity problem
applies to almost all the empirical literature on collective rationality since the formation and dissolution
of households is itself endogenous.

3.2. The Survey

With an aim at testing household efficiency in Burkina Faso, Anyck Dauphin, one co-author of
this paper, conducted a field survey between January and March 1999 under the auspices of the Centre
canadien d’étude et de coopération internationale (CECI). Its primary purpose was to collect informa-
tion on the household decision process pertaining to consumption spending, time allocation, fertility,
as well as potential distribution factors. The information on the income of the different spouses was
collected indirectly. Since most households live out of agriculture and since agricultural production
survey are very complex, the survey focused on household expenditures which can be considered as a
good indicator of their permanent income. For each spouse data were collected on expenditures on food
and non-food products, durable goods and self-consumption. Expenditures on so-called “assignable”
goods were also collected such as household expenditures on clothes and hairdressing for the husband,
the wives and their respective children.

The survey was conducted in the Province of Passoré which has a population of approximately
322 00022, primarily because the CECI had been involved in the region for a long time and had estab-
lished close links with the local institutions. The province is divided into nine administrative regions.
In order to minimize cost, the survey was limited to the five regions that were deemed the most repre-
sentative of the economic and social fabric of the province. These include Dakiégré, Pelegtanga, Rallo,
and Sectors 1 and 5 of the City of Yako (Yako-1, Yako-5).

To be included in the sample a household had to meet the following two conditions: (1) The (male)
household head as well as his spouse(s) had to be less than 70 years of age and; (2) They all had to
live permanently on the same compound. Prior to sampling, a census was conducted in each of the five
regions to identify married households and to determine eligibility. Over 125 married households were
then randomly selected among those eligible in each region, except for the village of Dakiégré where
all 111 households were selected.

Table 1 indicates the number of potential households as well as the number of households who were
present at the time of the survey and agreed to answer the detailed questionnaire. Overall, as many as
551 households out of 611 were interviewed (response rate = 90%). The questionnaires were pre-tested
during a period of two weeks by local trained investigators. For each household, the head and each of
his spouses were interviewed individually and separately using a “female” and “male” version of the
questionnaire. Heads were interviewed by a male investigator and each spouse was interviewed by a
female investigator.

TABLE 1 ABOUT HERE

22According to the National 2006 Census.
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3.3. Sample Characteristics

Polygamy is more prevalent in rural areas. Indeed, Table 2 shows that the average number of wives
per head is lower in Yako-1 and Yako-5, the only two urban areas in our sample, and is highest in the
village of Dakiégré. The table also shows that 71.1% of households are monogamous.

TABLE 2 ABOUT HERE

Sample size for monogamous and bigamous households are 392 and 117, respectively. The main
characteristics of these samples are presented in Table 3, which is divided into three separate panels.
The first shows that more than 30% of monogamous households are Muslim, a percentage that increases
to 44% in bigamous households. Monogamous husbands are on average 42 years old, that is 7 years
younger than polygamous males. Wives from monogamous households are on average 33 years old,
somewhat in-between the age of first and second wives of bigamous households. Not surprisingly then,
monogamous wives with an average of 3.5 children have fewer (more) children than the first (second)
wife of bigamous households. The estimated budget for monogamous and bigamous households over
a two month period covered by the survey are respectively 117 620 CFA and 216 743 CFA.

TABLE 3 ABOUT HERE

The ability to assess the impact of distribution factors on expenditures is greatly enhanced if the
survey focuses on assignable goods. These may be consumed by more than one household member but
individual consumption is observed in the data. A priori, distribution factors that favour a particular
household member should have a noticeable impact on his/her share of a given assignable good. The
field survey was thus designed to collect information on the main assignable goods consumed by each
member of the household. Survey pretesting indicated that clothing and hairdressing were the two most
important items that could qualify as assignable goods in the rural Burkinabé context. Expenditures on
these two goods were aggregated into a single category which we refer to as "Personal Care". Each
spouse in the household was thus surveyed about the expenditures made on these goods for his/her own
purpose, and for those of the other spouses and their children. The second panel of the table reports
the average share of the household budget devoted to the clothing and hairdressing of the husband
(PC-Husband), his wives (PC-Wife1 and PC-Wife2) and their respective children (PC-Child1 and PC-
Child2). The shares of personal care accruing to the wives are larger than those of husbands and
children in both monogamous and bigamous households. In monogamous households the wives’ share
amounts to 9.95% while it represents about 4% for both wives in bigamous households. As in most
poor countries, expenditures on food is the single most important item. The main staple food, millet,
represents between 7.3% and 10.5% of the household budget whereas the remaining food items (O-
Food) account for slightly more than 40%.

The last panel of the table focuses on distribution factors. In our data, a monogamous wife con-
tributes on average to approximately 23% of total household income. In bigamous households, the first
and second wives’ shares are 17% and 14%, respectively. We may thus expect husbands in bigamous
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households to have less overall bargaining power as their share of total income is less. Yet, because
both wives individually hold a smaller share of income than wives in monogamous households, it is not
clear how bargaining power differs across the two types of households. Finally, monogamous house-
holds had lasted approximately 14 years and bigamous households had formed 22 years prior to our
survey. The time lapse between first and second marriages is about eleven years.

4. Estimation Results

Our estimation strategy is threefold. For both monogamous and bigamous households we estimate
a QUAIDS demand system.23 We first test rationality with Proposition 1 for monogamous households
and with Proposition 2 for bigamous households. Second, we use the rank test proposed by CE2006.
Recall that this test is asymptotically equivalent to ours. Finally, we test collective rationality for
monogamous households using the test procedure proposed by Bourguignon et al. (2009), irrespective
of whether one of the distribution factors locally affects each demand of the system.

4.1. Monogamous Households

The demand system is composed of six non-durable goods, of which three are assignable : PC-
Husband, PC-Wife, PC-Children, Millet, Other Foods and expenditures on remaining nondurable
goods. Only the first five demands are estimated due to the adding-up constraint. Individual shares
are regressed against the log of total expenditures on non-durable goods (lnTotExp) and its square
(lnTotExp2). The two distribution factors are the log of the wife’s share of household income (SIn-
comeW) and the duration of marriage (DMarriage). We also control for location, religion, age of
spouses and the number of children under 16 years of age (X). The budget shares functions are written
as:

wn = X′nαn + βn lnTotExp+ θn(lnTotExp)
2 + δnSIncomeW + γnDMarriage+ εn (6)

Table 4 reports the OLS estimation results. Several parameter estimates are statistically significant.
Ethnic groups and location appear to be important determinants of expenditure shares. Husbands’ age
is negatively related to both PC-Husband and PC-Wife but positively related to Other Foods. Likewise,
the number of children has a negative impact on PC-Husband and PC-Wife but a positive one on PC-
Children, as expected. The log of expenditures and its square are not individually significant for any
share, but are jointly significant for PC-Children, Millet and Other Foods, as shown at the bottom of
the table.24

23The QUAIDS model has the advantage of being a flexible functional form that accommodates quadratic nonlinearities
in the Engel curves. More specifically, it is a rank three demand system in the sense of Lewbel (1991). Also, it has been
validated empirically on many occasions (e.g., Banks et al., 1997; Blundell and Robin, 1999; Browning et al., 2013). Given
the relatively small size of our samples, we thought this parametric model would be a good approximation to a full-fledged
non-parametric approach.

24Total expenditures are usually instrumented with income in demand systems as they may be endogenous. Yet, households
in rural Burkina Faso have next to no savings and spend very little on durable goods.
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Interestingly, the wife’s share of total income (SIncomeW) impacts negatively PC-Husband and
positively PC-Children. These results are consistent with a larger share of income translating into
a larger bargaining power. Notice also that DMarriage is usually deemed unfavorable to the wife
presumably because the likelihood of the husband contracting a new marriage increases. According to
the parameter estimates, more years of marriage do indeed translate into larger and smaller shares of
PC-Husband and PC-Wife, respectively.

TABLE 4 ABOUT HERE

4.1.1. Rationality Tests Based on Proposition 1

Proposition 1 provides restrictions that are gradually more restrictive which allows us to adopt a
sequential approach. The first step is to test unitary rationality (7a), which assumes away the existence
of distribution factors. A simple way to test this restriction when the covariance between the distribution
factors is negligible is to use simple t-tests.25 According to Table 4, this restriction must be rejected
since the two distribution factors we consider are statistically significant in various demand functions.

We thus move on to test collective rationality using Restriction (7b). This all or nothing restriction
is a necessary condition requiring that each demand function either do not respond to any of the dis-
tribution factors or respond to all of the distribution factors. Again, when the covariance between the
distribution factors can be neglected, simple t tests of significance can be used. As shown in Table 4,
the shares of PC-Wife and PC-Children respond significantly only to one out of two distribution factors.
Therefore, collective rationality must be rejected.

4.1.2. Rationality Tests Based on CE2006

As stressed earlier, the CE2006 rank test is asymptotically equivalent to the test of our Proposi-
tion 1. Their test is carried out sequentially, starting with the Restriction (9a). The null hypothesis
H0 : rank[Dzx(z)] = 0 is computed using an F statistic to test that both distribution factors are si-
multaneously statistically significant in all the demand functions. The F (10, 1870) statistic is equal to
4.28 and has an associated P-value of 0.00001. Clearly, the unitary rationality is rejected by our data.
We thus move on and testH0 : rank[Dzx(z)] = 1. Since our sample is relatively small, we implement
a recent constrained bootstrap method proposed by Portier and Delyon (2014) to insure both our propo-
sition and that of CE2006 have similar statistical properties.26 More precisely, we use the test statistic

25The covariance between our two distribution factors is 0.26. When the covariance between the distribution factors is not
negligible, a more complex test must be implemented.

26Portier and Delyon (2014) developed a so-called constrained bootstrap method which allows to compute the bootstrap
distribution of three distinct rank-test statistics proposed in the literature under the null hypothesis that the rank of the matrix
is of a given size. Among the three available statistics, we have chosen that of Li (1991) since the consistency of its associated
constrained bootstrap test relies on less stringent conditions than the other two. The Li (1991) statistics is the following:

Λ̂ = n
P∑

p=m+1

λ̂p,
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proposed by Li (1991) but do not use its asymptotic distribution because it is not pivotal. Instead we
estimate its bootstrap distribution under the null hypothesis that rank[Dzx(z)] = 1 as suggested by
Portier and Delyon (2014). The sampling value of the statistic is equal to 0.00577 and has a P-value of
0.0001. The CE2006 test is thus consistent with our own test in rejecting collective rationality.

4.1.3. Rationality Tests Based on BBC2009

Recall that Proposition 2 of BBC2009 requires that all the demands function respond to at least
one common distribution factor. As stressed earlier, this condition is hardly ever satisfied. It is cer-
tainly not in our data. We nevertheless omit this condition and carry on testing collective rationality.
Restriction ii of Proposition 2 of BBC2009 stipulates that for collective rationality to hold the ratio of
the marginal effects of the two distribution factors must be equal across the demand functions, i.e., H0:
δ1/γ1=δ2/γ2=δ3/γ3=δ4/γ4=δ5/γ5. Based on the parameter estimates of Table 4, we get a test statistic
of χ2(4) = 7.02 with an associated P-value of 0.135. In other words, the null assumption can not be
rejected and so neither is collective rationality.

Obviously, this test is fundamentally flawed because it is based on a false premise. Indeed, both
distribution factors are not statistically different from zero in three demand functions. Hence, the ratios
of the marginal effects are essentially zero in most cases. As a matter of fact, a joint test that all the ratios
are equal to zero, i.e., H0 : δ1/γ1=δ2/γ2=δ3/γ3=δ4/γ4=δ5/γ5=0, yields a test statistic of χ2(5) = 9.06
with an associated P-value of 0.107. In other words, we can not reject the null assumption that all the
ratios are equal to zero. A naive application of the BBC2009 test would thus lead us to (correctly)
reject unitary rationality and (wrongly) not to reject collective rationality.

The Proposition 2 of BBC2009 provides another restriction stated in terms of z-demand functions
which is equivalent to the Restriction ii. This restriction, like our Restriction (7d), requires that a given
demand function be inverted relative to one of its distribution factors and that the latter be substituted
into the remaining demand functions. It states that the resulting z-conditional demand functions must
no longer respond to the distribution factors. One difficulty with this approach is that the conditioning
demand function must be instrumented to obtain consistent estimators. The literature suggests the sub-
stituted distribution factor be used as an instrument. We thus considered the four possibilities provided
by Table 4, that is inverting PC-Husband or PC-Children on SIncomeW and inverting PC-Husband
or PC-Wife on DMarriage. For each of these possibilities, we tested whether the distribution factor
constituted an adequate instrument. In each case, the Cragg-Donald Wald F statistic, which is equal to
the effective F statistic in the just-identified case, was found to be well below the three critical values
suggested in the literature. These are the rule of thumb of Staiger and Stock (1997), the Stock and
Yogo (2005) critical value for 10% maximal IV size distortion and the critical value associated to a bias

where n is the sample size, (λ̂1, ..., λ̂P ) are the singular values of the matrix Dzx(z) arranged in descending order and
m > 0 is the assumed rank of Dzx(z). The null assumption is H0 : rank[Dzx(z)] = m against H1 : rank[Dzx(z)] > m.
Since this procedure cannot test whetherH0 : rank[Dzx(z)] = 0, we begin with an F test that all the distribution factors are
simultaneously statistically significant in all the demand functions. If rejected, the next step is to testH0 : rank[Dzx(z)] = 1

with a constrained bootstrap test of Λ̂, and so on until the maximum rank of Dzx(z) (i.e. I) is reached.
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of Nagar of 10% as proposed by Montiel and Pflueger (2013). Furthermore, despite our best efforts,
we could not come up with a single set of satisfactory instruments in an overidentified context. All
proved to be weak according to the Stock-Yogo weak-ID critical value for 5% maximal IV relative
bias. Consequently, we elected not to investigate Restriction iii of BBC2009 further.27

4.2. Bigamous Households

The demand system includes the same items as with monogamous households but in addition in-
cludes personal care of the second wife (PC-Wife2) and her children (PC-Children2). The system is
composed of eight non-durable goods, five of which are assignable. The first seven demand functions
are estimated using the QUAIDS system. The three distribution factors include the log of the share
of income of each wife relative to total household income as well as the share of the duration of the
first wife’s marriage relative to the total duration of the marriage of the two wives, i.e., SDMarriageW1
= Years of marriage wife1/(Years of marriage wife1+Years of marriage wife2). The other explanatory
variables are the same as with monogamous households but also include the age of the second wife as
well as her number of children aged under 16. The budget shares functions are written as follows:

wn = X′nαn + βn lnTotExp+ θn(lnTotExp)
2 + δnSIncomeW1+

ρnSIncomeW2 + γnSDMarriageW1 + εn
(7)

Table 5 reports the OLS estimation results. Several parameter estimates are statistically significant.
As with monogamous households, ethnic origin and region of residence are important determinants of
spending patterns. The log of total expenditures and its square are not statistically significant.

TABLE 5 ABOUT HERE

The distribution factors SIncomeW1 and SIncomeW2 are statistically significant in two demand
functions and have the expected signs. The former proxies the bargaining power of the first wife
and interestingly is shown to have a negative impact on both PC-Husband and PC-Wife2. The latter
proxies the second wife’s bargaining power and positively affects PC-Wife2 and PC-Children2, as
expected. Finally, SDMarriageW1 proxies the seniority of the first wife and is associated with her
having greater bargaining power. Results show it has a negative impact on PC-Children2 and a positive
one on Millet and O-Food. In short, the marginal effects are intuitively appealing and are consistent
across the demand system.

4.2.1. Rationality Tests Based on Proposition 2

Proposition 2 is a generalization of Proposition 1 to multi-person households. Testing begins with
Restriction (8a) which implies that the three variables SIncomeW1, SIncomeW2 and SDMarriageW1

27Few, if any, papers ever report tests of weak instruments in the empirical literature.
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must have no influence on the demand system. Because the distribution factors are statistically signifi-
cant in various demand functions we reject that bigamous households behave in a unitary way.

TABLE 6 ABOUT HERE

We next investigate whether collective rationality holds using the necessary Restriction (8b). The
first step is to test whether (8b) holds when J = 0, i.e. that each individual demand function ei-
ther does not respond to any of the distribution factors or responds to all of them. This restriction is
clearly rejected since none of the demand functions responds to all three distribution factors. We thus
move on to test whether Restriction (8b) is satisfied when J = 1. According to Restriction (8b), any
given demand function that responds to the distribution factors may be inverted relative to one of the
latter. Upon substituting the distribution factor, the remaining conditioned demand functions must ei-
ther all be insensitive to the remaining distribution factors, or only be sensitive to a common subset.
From Table 5, there are six possible inversions: PC-Husband and PC-Wife2 relative to SIncomeW1,
PC-Wife2 and PC-Children2 relative to SIncomeW2 and finally, PC-Children2 and O-Food relative to
SDMarriageW1. For each of these possibilities, we tested whether the distribution factor constituted
a weak instrument. The Cragg-Donald Wald F statistic is reported in Table 6. Based on the rule of
thumb of Staiger and Stock (1997), the variable SIncomeW2 is not a weak instrument in PC-Wife2 and
PC-Children2. However, based on the Stock and Yogo (2005) critical value for the 10% maximal IV
size (= 16.38), we do not reject that SIncomeW2 is a weak instrument of PC-Wife2. This instrument is
also weak accordingly to the critical value associated to a 10% bias of Nagar as suggested by Montiel
and Pflueger (2013) (=23.1). Because of these mixed results, and in order to show how to implement
Restriction (8b) with J = 1, we carry out the analysis and invert SIncomeW2 and PC-Wife2. We next
substitute out the latter in the unconditional demand functions that respond to the distribution factors,
namely PC-Husband, PC-Children2 and O-Food. The resulting z-conditional demand functions were
estimated by 2SLS and the results are reported in Table 7.

TABLE 7 ABOUT HERE

The parameter estimates of the z1-conditional demand functions are very similar to their uncondi-
tional counterpart. The distribution factor SIncomeW1 remains statistically significant in PC-Husband
while the same holds for SDMarriageW1 in PC-ChildrenW2 and OFood. This is at odds with Restric-
tion (8b) when J = 1. Therefore, conditionally on the assumption that SIncomeW2 is not a weak
instrument of PC-Wife2, collective rationality is rejected.

4.2.2. Rationality Tests Based on CE2006

As with monogamous households, we begin by testing unitary rationality. Restriction (9a) posits
that rank[Dzx(z)] must be equal to zero for this to hold. The test yields F (10, 1420) = 4.85 with a
very small P-value. Unitary rationality is thus strongly rejected. We next test H0 : rank[Dzx(z)] = 1
using the bootstrapped Li (1991) statistic. The sample value of the statistic is 0.1018 with a P-value of
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about 0.000. Once again, the null assumption must be rejected. This is consistent with our previous
result based on Restriction (8b) for J = 0. Finally, we move on to test H0 : rank[Dzx(z)] = 2. This
is equivalent to testing there are three decision-makers in the household. The sample statistic is equal
to 0.017 and its P-value is about 0.000. Rejection of the hypothesis thus implies rejection of collective
rationality, which is consistent with the result from our Proposition 2.

5. Conclusion

The collective household model has become the main paradigm to conduct empirical research for
good reasons: It is based on relatively innocuous assumptions, and assuming these hold, allows in-
vestigating intrahousehold distributional impacts of numerous policies. Yet, one can not help but be
concerned about the falsifiability of the model as it is seldom if ever rejected in the empirical literature.
Such overwhelming evidence in favor of the collective model may eventually stray many from inves-
tigating the foundations of the model toward assuming it holds, irrespective of the environment under
investigation.

We suspect the under-rejection of the collective model is primarily due to the manner in which its
underlying theoretical restrictions are translated into statistical restrictions. Indeed, most papers inves-
tigate the collective model using a test procedure that was proposed by Bourguignon et al. (2009). Yet
the procedure requires that in any given demand system all functions respond to at least one common
distribution factor. This assumption is scarcely met in the empirical literature. Most papers simply
ignore this and thus conduct tests based on a false premise.

In this paper we provide a new falsifiable restriction which extends Bourguignon et al. (2009)’s
approach insofar as it does not require a distribution factor to affect each equation of a demand system.
When there are potentially two decision-makers, our test procedure to assess the validity of the latter
restriction is appropriate even in small samples. We derive a set of testable conditions that take this
restriction into account and fully characterize collective rationality, assuming no variations in prices.
Moreover, our approach is generalized to households comprising potentially more than two members.

We illustrate the usefulness of our approach by investigating efficiency in allocation of consumption
within monogamous and bigamous households in rural Burkina Faso. Social and cultural environments
as well as institutional arrangements are likely to impede the enforcement of efficient marriages. We
thus do not expect, a priori, outcomes to be efficient. Based on our proposed test procedure and on Chi-
appori and Ekeland (2006)’s rank test (which is asymptotically equivalent to ours but more complicated
to implement), rationality is found not to hold for monogamous and polygamous households alike. We
next proceed to test rationality for monogamous households using the test procedure of Bourguignon
et al. (2009) while neglecting the fact that no one distribution factor is statistically significant in every
demand functions. Collective rationality is then (wrongly) found to hold for monogamous households.

In a Popperian sense, an important conclusion that can be drawn from this paper is that the col-
lective model is clearly falsifiable: its underlying assumptions translate into non-trivial constraints.
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Appropriately accounting for the latter may reveal that far fewer households behave efficiently than
what the current literature suggests.

Recent work (e.g., Lechene and Preston, 2011) has shown that non-cooperative models with public
goods or externalities may impose restrictions on household behavior. A natural extension to our paper
would be to develop and take to data a general model that has the collective and the non-cooperative
(Nash) models as particular cases. Rigorous testing of competing sets of constraints would enhance
our understanding of household behavior.28

Finally, our analysis is conditional on the marital status of the household: either monogamous or
bigamous. Yet, since the seminal work of Becker (1993) on marriage markets, it is generally acknowl-
edged that formation, dissolution and even the marital status of households are endogenous (see in
particular his Ch. 3 on polygamy and monogamy). Another extension to our work would consist in
introducing the marriage market into household behavior.29

28See Naidoo (2015) for an analysis of such possible extensions.
29There exists a recent (still unpublished) literature that attempts to jointly analyze household behavior as well as household

formation and dissolution within a collective setting (Jacquemet and Robin, 2012; Mazzocco et al., 2013; Goussé, 2014).
However, these studies, which all apply to developed countries, focus on savings, labor supply or household production, and
not on consumption goods.
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Appendix A. Proofs of Propositions 1–2

Proof of Proposition 1
Necessity: In rational households composed of two members, x(z) ≡ x̂(µ(z)) and there is a single
Pareto weight. If the Pareto weight is constant, thenDzµ(z) = 0 or, put differently, K = 0. Therefore,
Dzx(z) ≡ Dµx̂(µ(z))Dzµ(z) = 0 as stated by result (7a). Now, if there are K ≥ 2 distribution
factors, then Dzµ(z) 6=6= 0 since distribution factors can only impact the demand system through
their effect on the one Pareto weight. Since Dzxn(z) ≡ ∂x̂n(µ(z))/∂µ · Dzµ(z) with n = 1, ..., N ,
if ∂x̂n(µ(z))/∂µ = 0, then Dzxn(z) = 0. Otherwise Dzxn(z) 6=6= 0. This shows that each de-
mand stemming from collectively rational households composed of two members must satisfy (7b).
Furthermore, since a distribution factor must not change the budget constraint, there must be at least
two demands such that Dzxn(z) 6=6= 0 when (7b) holds. Denoting the number of demands such that
Dzxn(z) 6=6= 0 when (7b) holds as M , we have 2 ≤ M ≤ N . For these demands, denoted as x∗m(z),
the ratio of the marginal effect of 1st and kth distributions factor is equal to:

∂x∗m(z)/∂z1
∂x∗m(z)/∂zk

=
∂x̂∗m(µ(z))/∂µ · ∂µ(z)/∂z1
∂x̂∗m(µ(z))/∂µ · ∂µ(z)/∂zk

=
∂µ(z)/∂z1
∂µ(z)/∂zk

6= 0 ∀ k = 2, ...,K, m = 1, ...,M,

which proves (7c). Finally, based on the Implicit Function Theorem, it is possible to invert any of
these M demands with any of the K distribution factors at P = (z). Arbitrarily selecting x∗1(z) and
distribution factor z1, one gets z1 = z1(x

∗
1, z-1) which is substituted into the M demands:

x∗1(x
∗
1, z-1) ≡ x∗1(z1(x∗1, z-1), z-1) ≡ x̂∗1(µ(z1(x∗1, z-1), z-1))

x∗m(x
∗
1, z-1) ≡ x∗m(z1(x∗1, z-1), z-1) ≡ x̂∗m(µ(z1(x∗1, z-1), z-1)) ∀m = 2, ...,M.

Deriving these demands with respect to z-1 at P = (z) yields :

0 = ∂x̂∗1(µ(z))/∂µ ·Dz-1µ(z1(x
∗
1, z-1), z-1) (A1)

Dz-1x
∗
m(x

∗
1, z-1) ≡ ∂x̂∗m(µ(z))/∂µ ·Dz−1µ(z1(x

∗
1, z-1), z-1) ∀m = 2, ...,M. (A2)

SinceDzx
∗
1(z) 6= 0, it follows that ∂x̂∗1(µ(z))/∂µ 6= 0 in (A1). Therefore,Dz-1µ(z1(x

∗
1, z-1), z-1) = 0

is the only possible solution to (A1), which implies that Dz-1x
∗
m(x

∗
1, z-1) = 0 in (A2) and proves (7d).

Accordingly, (7b), (7c) and (7d) are necessary conditions for collective rationality when K ≥ 2 and
N ≥ 2.

Sufficiency: A proof of the sufficiency of the conditions (7c) and (7d) for collective rationality can be
found in BBC2009 (see their Appendix A, Proof of proposition 2).�

Proof of Proposition 2
Necessity: In rational households composed of I+1 members, x(z) ≡ x̂(µ(z)) and there are I Pareto
weights. If they are all constant, then Dzµ(z) = 0 or, put differently, K = 0. Therefore, Dzx(z) ≡
Dµx̂(µ)Dzµ(z) = 0 as stated by result (8a). Now, if there are K ≥ I+1 distribution factors, then
some Pareto weights are responding to some distribution factors, that is Dzµ(z) 6= 0. Let us denote
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the rank of Dzµ(z), a matrix of dimension I ×K, as I∗. Further denote the rank of Dzx(z) as J+1, a
N ×K matrix with N ≥ I+1 with 1 ≤ J+1 ≤ I∗. Since rank[Dzx(z)] = J+1, we can arrange the N
demands so that Dzx-(J+1)(z) = CDzxJ+1(z) where DzxJ+1(z) is a matrix of dimension (J+1)×K
which has a rank equal to J+1, and C is a matrix of coefficients of dimension (N -J-1) × (J+1).
Without loss of generality, we can arrange the distribution factors so that rank[DzJxJ(z)] = J , which
allows us to use the Implicit Function Theorem to invert xJ and zJ in order to get zJ = zJ(xJ , z-J).
Upon substituting in the demand system we get:

xJ(xJ , z-J) ≡ xJ(zJ(xJ , z-J), z-J)

x-J(xJ , z-J) ≡ x-J(zJ(xJ , z-J), z-J).

Deriving these demands with respect to z-J at the point (z) gives:

0 = Dz-JxJ(xJ , z-J) (A3)

Dz-Jx-J(xJ , z-J) ≡
[
Dz-JxJ+1(xJ , z-J)
Dz-Jx-J-1(xJ , z-J)

]
=

[
Dz-JxJ+1(xJ , z-J)
CDz-JxJ+1(xJ , z-J)

]
(A4)

Using (A3) and the fact that Dz-JxJ+1 ≡ [Dz-Jx
′
J , Dz-Jx

′
J+1]

′, we can rewrite (A4) as:

Dz-Jx-J(xJ , z-J) =

[
Dz-JxJ+1(xJ , z-J)

C[Dz-Jx
′
J(xJ , z-J), Dz-Jx

′
J+1(xJ , z-J)]

′

]
=

[
Dz-JxJ+1(xJ , z-J)

C[0′, Dz-JxJ+1(xJ , z-J)
′]′

]
=

[
1

CJ+1

]
Dz-JxJ+1(xJ , z-J) (A5)

whereCJ+1 ≡ [c1J+1, ..., cN−J−1J+1]
′ is a vector of dimensionN -J-1 corresponding to the last column

of the matrix C. Clearly, Dz-JxJ+1 6= 0 since rank[DzJxJ(z)] = J and rank[DzxJ+1(z)] = J+1.
Let us thus partition z-J as z-J≡[z∗′L , z∗′-L]′ with 1 ≤ L ≤ K-J so that Dz∗L

xJ+1 6=6= 0 and Dz∗-L
xJ+1 =

0. Since (A5) implies that Dz-Jxn = cnJ+1Dz-JxJ+1 for n = J+2, ..., N , it follows that Dz-Jxn = 0
if cnJ+1 = 0. Otherwise Dz∗L

xn 6=6= 0 and Dz∗-L
xn = 0. This establishes (8b). Hence, each demand

stemming from rational households composed of two members or more must satisfy either (8a) or (8b).

Denote the demand xJ+1 as x∗1 and any other demand such that Dz∗L
xn 6=6= 0 as x∗m, where

m = 2, ...,M with 2 ≤ M ≤ N -J . Assuming (8b) holds and that L ≥ 2, equation (A5) implies that
the ratio of the marginal effect of the 1st and lth distribution factors is equal across these conditional
demands:

∂x∗m(xJ , z-J)/∂z
∗
1

∂x∗m(xJ , z-J)/∂z∗l
=
∂x∗1(xJ , z-J)/∂z

∗
1

∂x∗1(xJ , z-J)/∂z∗l
6= 0 ∀ l = 2, ..., L m = 2, ...,M,

which establishes (8c). Finally, note that because rank[DzxJ(z)] = J+1 there exists a zJ+1 such that
rank[DzJ+1xJ+1(z)] = J+1. We can thus invert xJ+1(xJ , z-J), denoted as x∗1(xJ , z-J), and zJ+1 to
get zJ+1 = zJ+1(xJ , x

∗
1, z-(J+1)) which we substitute in zJ = zJ(xJ , zJ+1(xJ , x

∗
1, z-(J+1)), z-(J+1)) =

zJ(xJ , x
∗
1, z-(J+1)). Upon substitution we get:
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xJ+1(xJ , x
∗
1, z-(J+1)) ≡ xJ+1(zJ+1(xJ , x

∗
1, z-(J+1)), z-(J+1))

x∗m(xJ , x
∗
1, z-(J+1)) ≡ x∗m(zJ+1(xJ , x

∗
1, z-(J+1)), z-(J+1)) ∀m = 2, ...,M.

Deriving the equations with respect to z-(J+1) at (z) gives:

0 = Dz-(J+1)xJ+1(xJ , x
∗
1, z-(J+1)) (A6)

Dz-(J+1)x
∗
m(xJ , x

∗
1, z-(J+1)) = C ′mDz-(J+1)xJ+1(xJ , x

∗
1, z-(J+1)) ∀m = 2, ...,M, (A7)

where Cm is a vector of dimension (J+1) corresponding to the row associated with the demand x∗m
in the matrix C. Substituting (A6) in (A7) gives Dz-(J+1)x

∗
m(xJ , x

∗
1, z-(J+1)) = 0 as stated in result

(8d). This implies that (8b), (8c) and (8d) are necessary conditions for collective rationality when
K ≥ I + 1, N ≥ I + 1 and L ≥ 2. Note finally that it is always possible to partition x ≡[x′J ,x′-J ]′
and z ≡[z′J , z′-J ]′ in such a way that L ≥ 2. To see this, note that since K ≥ I + 1 > I∗, where
I∗ represents the number of linearly independent weights, some of them must depend on more than
one distribution factor. Therefore, it is possible to find partitions of x and z where the last remaining
linearly independent weight in (A5) depends on more than one distribution factor.

Sufficiency: To prove sufficiency, we need to show that whenever x(m, z) = x̂(m,ν(m, z)) where
ν(m, z) is a vector of dimension I∗ ≤ I + 1, there exist I∗ + 1 quasi-concave utility functions and
I∗ Pareto-weights such that the observed demands x(m, z) are solutions to the maximization program
associated to collective rationality. Take I∗ different arbitrary functions that are positive, increasing
and quasi-concave in x and denote these by Gi(x) with i = 1, ...., I∗ and define:

M i(m,ν) ≡ Gi(x̂(m,ν)) ∀ i=1,. . . ,I∗. (A8)

Let V i(X) with i = 1, ..., I∗ + 1 be increasing and quasi-concave utility functions, where the vector
X represents the public consumption of each commodity. Each utility function is obviously a partic-
ular case of the general utility function U i(x). The necessary and sufficient first-order conditions for
collective rationality implied by these utility functions are:

I∗∑
i=1

µiDxV
i(x) +DxV

I∗+1(x) = λι, (A9)

where λ is the Lagrange multiplier associated with the budget constraint. Define:

V i(x) ≡ Ci(Gi(x)) ∀ i=1,. . . ,I∗, (A10)

V I+1(x) ≡ A(ι′x) +
I∗∑
i=1

Bi(Gi(x)), (A11)

where A and the Ci are arbitrary increasing scalar functions, with Bi given by:

Bi′ ≡ −GiCi′ ∀ i=1,. . . ,I∗, (A12)
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and the function A is taken to be large enough with relative to Bi to ensure that V I+1 is increasing.
Deriving (A10) and (A11) with respect to x yields:

DxV
i(x) = Ci′DxG

i(x) ∀ i=1,. . . ,I∗, (A13)

DxV
I+1(x) = A′ +

I∗∑
i=1

Bi′DxG
i(x). (A14)

Substituting A(12) and (A13) into A(14) gives:

DxV
I+1(x) = A′ −

I∗∑
i=1

Gi(x)DxV
i(x),

which shows that the observed demand functions x(m, z) are thus satisfy the first-order condition (A9)
for the utility functions (A10) and (A11) when µi(m, z) =M i(m,ν(m, z)) with i = 1, ..., I . �
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TABLE 1: Sample Selection

Village Population* Number Number Number Number
of married of eligible of households of households
households households selected who accepted

Dakiégré 1141 133 111 111 103
Pelegtanga 551 201 170 125 121
Rallo 1 053 207 162 125 108
Yako-1 856 221 128 125 117
Yako-5 1 311 246 236 125 102
Total 4 912 1 008 807 611 551
*According to the 1991 Demographic Census.

TABLE 2: Prevalence of Polygamy

Average Percentage of Percentage of Percentage of
number households households households

of wife per with one with two with more than two
household wife wives wives

Dakiégré 1.7 56 26 18
Pelegtanga 1.4 69 26 5
Rallo 1.4 68 26 6
Yako-1 1.2 80 9 11
Yako-5 1.3 78 19 3
Total 1.4 71.1 21.2 7.7

TABLE 3: Sample Characteristics

Monogamous Households Bigamous Households
Mean (Std error) Mean (Std error)

Muslim 32 - 44 -
Age Husband 42 (12.49) 49 (11.27)
Age Wife1 33 (11.84) 42 (11.07)
Age Wife2 31 (8.66)
Children Wife1 3.47 (2.33) 4.75 (2.36)
Children Wife2 3.16 (2.17)
Total Expenditures (CFA francs) 177 620 (111 803) 216 743 (100 045)
Budget Shares

PC-Husband 0.0360 (0.0419) 0.0225 (0.0288)
PC-Wife1 0.0995 (0.0763) 0.0397 (0.0383)
PC-Wife2 0.0468 (0.0419)
PC-Child1 0.0534 (0.0462) 0.0313 (0.0285)
PC-Child2 0.0241 ( 0.0238)
Millet 0.0730 ( 0.1131) 0.1056 (0.1340)
Other Foods 0.4222 (0.1515) 0.4343 (0.1389)

Distribution factors
Share Income Wife1 0.232 (0.157) 0.1680 (0.0895)
Share Income Wife2 0.1426 (0.0927)
Duration Marriage Wife1 14 (15.75) 22 (10.09)
Duration Marriage Wife2 11 (8.56)

Note: PC stands for Personal Care.
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TABLE 7: 2SLS estimation of z1-Conditional Demands
Polygamous Households

Variables PC-Husband PC-Children2 O-Food

PC-Wife2 −0.049 0.609*** 0.277
( −0.256) ( 3.103) ( 0.274)

Intercep −0.987 0.575 −2.655
( −1.320) ( 0.740) ( −0.579)

Dakiégré 0.275*** −0.124 0.921**
( 3.479) ( −1.422) ( 2.008)

Pelegtanga 0.210* −0.078 0.359
( 1.976) ( −0.783) ( 0.707)

Rallo 0.009 0.014 0.271
( 0.131) ( 0.168) ( 0.542)

Yako-1 0.116 0.059 0.473
( 1.440) ( 0.551) ( 0.717)

Muslim 0.047 0.031 0.069**
( 0.719) ( 0.400) ( 2.224)

Age Husband −0.012 −0.048 0.140
( −0.240) ( −0.999) ( 0.713)

Age Wife1 −0.045 0.099* −0.151
( −0.891) ( 1.763) ( −0.613)

Age Wife2 −0.088 0.043 0.286
( −1.558) ( 0.702) ( 0.802)

Children Wife1 0.057 −0.045 −0.772
( 0.465) ( −0.290) ( −1.153)

Children Wife2 −0.066 0.244 0.870
( −0.551) ( 1.366) ( 0.772)

ln(Total Expenditures) 1.736 −0.942 4.110
( 1.356) ( −0.720) ( 0.529)

ln(Total Expenditures)2 −0.072 0.040 −0.157
( −1.336) ( 0.733) ( −0.485)

Share Income Wife1 −1.091*** 0.377 −0.382
( −2.630) ( 0.992) ( −0.155)

Share Duration Marriage Wife1 −0.317 −0.664** 3.258**
( −1.275) ( −2.599) ( 2.291)

Observations 117 117 117

Note: t-statistics in parentheses *** p<.01, ** p<.05, * p<.1
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